Вероятности попадания из каждого орудия:
p1 = 0,8; p2 = 0,7; p3 = 0,9;
Вероятность не попасть из каждого орудия:
q1 = 1 - 0,8 = 0,2; q2 = 1 - 0,7 = 0,3 ; q3 = 1 - 0,9 = 0,1;
Только один снаряд попадет в цель:
Пусть А - событие, при котором будет только одно попадание.
А1, A2, A3 - попадание было из орудия 1,2 или 3.
A`1, A`2, A`3 - попадания не было из орудия 1,2 или 3. Это противоположные события.
Представим вероятность как сумму вероятностей несовместных событий:
P(A) = P(A1)P(A`2)P(A`3) +P(A`1)P(A2)P(A`3)+ P(A`1)P(A`2)P(A3) =
= p1 · q2· q3 + q1 · p2 · q3 + q1 · q2 · p3 =
= 0,8 · 0,3 · 0,1 + 0,2 · 0,7 · 0,1 + 0,2 · 0,3 · 0,9 = 0,092;
Только два снаряда попадут в цель:
P(A) = p1 · p2· q3 + p1 · q2 · p3 + q1 · p2 · p3 =
= 0,8 · 0,7 · 0,1 + 0,8 · 0,3 · 0,9 + 0,2 · 0,7 · 0,9 = 0,398;
Хотя бы один снаряд попадет в цель:
Пусть A` - противоположное событие - ни один снаряд не попадет в цель:
P(A`) = q1 · q2 · q3 = 0,2 · 0,3 · 0,1 = 0,006;
Противоположное ему событие A - хотя бы один снаряд попадет в цель будет:
P(A) = 1 - P(A`) = 1 - 0,006 = 0,994;
ответ: а) 0,092; б) 0,398; в) 0,994.
Объяснение:
2 1/3
Объяснение:
1) Найти интервалы монотонности функции
y=x^3-3x^2+1
y'=3x²-6x=0 ; 3x(x-2)=0; x₁=0;x₂= 2
нанесем корни на числовую прямую и определим знаки производной на интервалах
y' + - +
(-∞)02(+∞)
y возрастает убывает возрастает
у возрастает при х∈(-∞;0]∪[2;+∞)
у убывает при х∈[0;2]
2) Найти экстремумы функции
а) y=x^2-10x+9
y'=2x-10=0 ; x=5
при х<5 y'<0
при х>5 y'>0
⇒ х=5 точка экстремума
экстремум:
y(5)=25-50+9=-16
б) в предположении что (1/3) это коэффициент при х³
y=(1/3)х³+x^2-3x+4
y'=x²+2x-3=0; x₁=1; x₂=-3 (корни найдены подбором с использованием теоремы Виета, но можно и по формуле корней квадратного уравнения)
определим знаки производной в окрестности корней
при х∈(-∞;-3) и х∈(1;+∞) y'>0
при х∈(-3;1) y'<0
⇒ -3 и 2 точки экстремума
экстремумы:
y(-3)=(-27/3)+9+9+4= -9+9+9+4==13
y(1)=(1/3)+1-3+4=2 1/3 (две целых одна третья)
Поделитесь своими знаниями, ответьте на вопрос:
Решите уравнение: (х в кв.-2) (х-5)+(х в кв.+2) (х+5)=22
(x+5)×(x^2-2+x^2+2)
(x+5)×2x^2
2x^2×(x+5)
^ - это степень.