e3913269
?>

Решите мне эти уравнения: известно что при некоторых значениях x и y значение выражения x и y равно 0, 7 какое значение принимает при тех же х и у выражение; а) 5 (х- у) г) х-у б) у-х в) 1 у-х х-у

Алгебра

Ответы

Probitbiz6

если  х - у = 0,7 ,  то

а) 5 * (х - у) = 5 * 0,7 = 3,5

б) у - х = -(х - у) = -0,7

в)      1 / (x - y) = 1 / 0,7 = 10 / 7

г)        (х - у) / (у - х) = -0,7 / 0,7 = -1

 

Lorik-lorik29

найти координаты точек => найти x и y когда эти две функции равны.

есть 3 варианта : x и y не существует = > прямые параллельны

x и y - бесконечно много вариантов = > прямые

x и y - только один ответ = > прямые пересекаются.

(других нет т.к. различные прямые не могут пересекаться более чем в 1 ой точке)

решим систему уравнений:

y = 10x - 14

y = -3x + 12

из 1 -то вычитаем второе:

< => (знак - равносильный переход)

y = 10x - 14

0 = 13x - 26

< =>

y = 20 - 14

x = 2

< =>

y = 6

x = 2

=> координаты точки пересечения - (2, 6)

Людмила Анна

Другими словами, если задано несколько уравнений с одной, двумя или больше неизвестными, и все эти уравнения (равенства) должны одновременно выполняться, такую группу уравнений мы называем системой.

Объединяем уравнения в систему с фигурной скобки:

Графический метод

Недаром ответ записывается так же, как координаты какой-нибудь точки.

Ведь если построить графики для каждого уравнения в одной системе координат, решениями системы уравнений будут точки пересечения графиков.

Например, построим графики уравнений из предыдущего примера.

Пример 1

Для этого сперва выразим yyy в каждом уравнении, чтобы получить функцию (ведь мы привыкли строить функции относительно xxx):

⎪⎪⎪

Для того чтобы графически решить систему уравнений с двумя переменными нужно:

1) построить графики уравнений в одной системе координат;

2) найти координаты точек пересечения этих графиков (координаты точек пересечения графиков и есть решения системы);

Разберем это задание на примере.

Решить графически систему линейных уравнений.

Графическое решение системы уравнений с двумя переменными сводится к отыскиванию координат общих точек графиков уравнений.

Пример 2

reshenie2_598x318

Графиком линейной функции является прямая. Две прямые на плоскости могут пересекаться в одной точке, быть параллельными или совпадать. Соответственно система уравнений может:

а) иметь единственное решение;

б) не иметь решений;

в) иметь бесконечное множество решений.

2) Решением системы уравнений является точка (если уравнения являются линейными) пересечения графиков.

Пример 3

Графическое решение системы

Пример 4

Решить графическим систему уравнений.

Графиком каждого уравнения служит прямая линия, для построения которой достаточно знать координаты двух точек. Мы составили таблицы значений х и у для каждого из уравнений системы.

Прямую y=2x-3 провели через точки (0; -3) и (2; 1).

Прямую y=x+1 провели через точки (0; 1) и (2; 3).

Графики данных уравнений системы 1) пересекаются в точке А(4; 5). Это и есть единственное решение данной системы.

ответ: (4; 5).

Пример 5

Выражаем у через х из каждого уравнения системы 2), а затем составим таблицу значений переменных х и у для каждого из полученных уравнений.

Прямую y=2x+9 проводим через точки (0; 9) и (-3; 3). Прямую y=-1,5x+2 проводим через точки (0; 2) и (2; -1).

Наши прямые пересеклись в точке В(-2; 5).

ответ: (-2; 5).

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решите мне эти уравнения: известно что при некоторых значениях x и y значение выражения x и y равно 0, 7 какое значение принимает при тех же х и у выражение; а) 5 (х- у) г) х-у б) у-х в) 1 у-х х-у
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

elenabarskova7145
татьяна1245
Руслан1360
pereverzev
nchalov2
Bi-1704
silviya
latoyan817
olg14855767
sahabiev1987
moidela87
morozovalexander90
Kuznetsova1639
buhh20104519
lilit-yan