x₁ = 2 + , y₁ = 2
- 3;
x₂ = 2 -, y₂ = - 3 - 2
:
Объяснение:
{ху - х = 4
{2х - у = 7
Выразим y и подставим во второе уравнение
{xy - x = 4
{-y = 7 - 2x
Уберём минус перед y, помножив выражение на (-1)
{xy - x = 4
{y = 2x - 7
Подставляем полученное выражение вместо y
x * (2x - 7) - x = 4
2x² - 7x - x =4
2x² - 8x - 4 = 0
Получаем квадратное уравнение. Сокращаем коэффиценты, деля обе стороны на 2
x² - 4x - 2 = 0
У нас a = 0. По теореме Виета: x₁ + x₂ = −b; x₁ * x₂ = c;
Но для начала проверим дискриминант
D = b² - 4ac
D = 16 - 4 * 1 * (-2)
D = 16 + 8 = 24
Нет такого натурального числа, которое было бы квадратным корнем из 24, поэтому мы не сможем решить теоремой Виета, и продолжаем решать дискриминантом
x₁,₂ =
x₁ = =
= 2 +
x₂ = =
= 2 -
Находим y, подставляя x
2 * (2 + ) - y₁ = 7
4 + 2 - y₁ = 7
- y₁ = 3 - 2
Убираем минус
y₁ = 2 - 3
Ищем y₂
2 * (2 - ) - y₂ = 7
4 - 2 - y₂ = 7
- y₂ = 3 + 2
Снова убираем минус
y₂ = - 3 - 2
ответ: x₁ = 2 + , y₁ = 2
- 3; x₂ = 2 -
, y₂ = - 3 - 2
;
Поделитесь своими знаниями, ответьте на вопрос:
Какие значения может принимать sina, если cosa=-1/корень из 5
Периметр треугольника (сумма сторон треугольника):
P = -1-2b + 3a+6ab + (-2a²b-a²) = -1-2b+3a+6ab-2a²b+a²=
= -2a²b+6ab+a²+3a-2b-1 - многочлен стандартного вида (подобных членов нет).
(Многочлен стандартного вида - это многочлен, каждый член которого имеет одночлен стандартного вида и не содержит подобных членов).
Полученный многочлен состоит из одночленов. Найдём их степени:
(Степень многочлена стандартного вида - это наибольшая из степеней входящих в него одночленов).
Степень первого одночлена (-2a²b) равна 2+1=3
Степень второго одночлена (6ab) равна 1+1=2
Степень третьего одночлена (a²) равна 2
Степень четвёртого одночлена (3a) равна 1
Степень пятого одночлена (-2b) равна 1
Степень шестого одночлена (-1) равна 0
Наибольшая из степеней одночленов равна 3, значит, степень данного многочлена равна 3.