1. Алгебраическая дробь — это дробь, числитель и знаменатель которой — многочлены (причем знаменатель отличен от нуля). Если ввести обозначение многочленов большими латинскими буквами: A, B, C, D, … , то алгебраическую дробь можно записать в виде.
2. Допустимыми значениями букв, входящих в алгебраическую дробь называют такие значения, при которых числитель этой дроби не равен нулю Одним из разложения многочленов на множители является применение формул сокращенного умножения.
3. В действиях с алгебраическими дробями. С алгебраическими дробями определены следующие действия: сложение, вычитание, умножение, деление и возведение в натуральную степень.
4.Математи́ческая моде́ль — математическое представление реальности, один из вариантов модели как системы, исследование которой позволяет получать информацию о некоторой другой системе.
5.Основное свойство алгебраической дроби позволяет сокращать дроби и приводить их к наименьшему общему знаменателю. Используют для: сокращения дробей, для нахождения наименьшего общего знаменателя необходимо найти наименьшее общее кратное (НОК) двух знаменателей.
Поделитесь своими знаниями, ответьте на вопрос:
Решите уравнения: методом сложения: 2х+5у=25 4х+3у=15 методом подстановки: 2х-3у= -25 х+7у = 47 графически: х+2у=14 3х-у=7 заранее : )