Разложим уравнение на множители.
0,5 * х * (3 * х2 / (0,5 * х) - 0,5 * х / (0,5 * х) = 0.
0,5 * х * (6 * х - 1) = 0.
Данное равенство будет выполняться, когда:
0,5 * х = 0 и 6 * х - 1 = 0.
х1 = 0 / 0,5 = 0.
6 * х2 = 0 + 1.
6 * х2 = 1.
х2 = 1/6.
Выполним проверку для х1 = 0:
3 * 02 - 0,5 * 0 = 0.
0 - 0 = 0.
0 = 0.
х1 = 0 является решением данного уравнения.
Выполним проверку для х2 = 1/6:
3 * (1/6)2 - 0,5 * 1/6 = 0.
3 * 1/36 - 5/10 * 1/6 = 0.
1/12 - 5/60 = 0.
1/12 - 1/2 = 0.
0 = 0.
х2 = 1/6 тоже является решением данного уравнения.
ответ: корни уравнения х1 = 0 и х2 = 1/6.
Объяснение:Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева. Равносильные уравнения — это те, в которых совпадают множества решений.
В решении.
Объяснение:
2) -24у² + (8 - у)³ + у³ <=0
В скобках куб разности, разложить по формуле:
-24у² + 512 - 192у + 24у² - у³ + у³ <= 0
После сокращений:
512 - 192у <= 0
-192y <= - 512
192y >= 512 (знак неравенства меняется при делении на -1)
у >= 512/192
y >= 8/3
Решение неравенства у∈[8/3; +∞).
На числовом луче штриховка от 8/3 ( 2 и 2/3) вправо до + бесконечности.
Кружок возле 8/3 закрашенный, значение входит в решения неравенства.
4) у³ - 27у² - (у - 9)³ > 0
В скобках куб разности, разложить по формуле:
у³ - 27у² - (у³ - 27у² + 243у - 729) > 0
Раскрыть скобки:
у³ - 27у² - у³ + 27у² - 243у + 729 > 0
После сокращений:
- 243у + 729 > 0
-243у > -729
243у < 729 (знак неравенства меняется при делении на -1)
у < 729/243
y < 3
Решение неравенства у∈(-∞; 3).
На числовом луче штриховка от - бесконечности вправо до 3.
Кружок возле 3 не закрашенный, значение не входит в решения неравенства.
Поделитесь своими знаниями, ответьте на вопрос:
20 за лучший ответ! найдите сумму первых 15 членов арифметической прогрессии (an): 1)а5=27, а27=60; 2)а20=0, а66=-92 3)а1=-3, а61=57 4)а1==-10, 5, а63=51, 5 !