ответ: 5/12
Объяснение:Количество всевозможных подбрасывания двух игральных костей равно 6*6 = 36 из них благоприятствуют те, у которых на первой игральной кости число очков больше, чем на второй:
1) Если на первой игральной кости выпало 1, то на второй: {2;3;4;5;6} - 5 вариантов
Если выпало 2 очка, то на второй кости: {3;4;5;6} - 4 варианта
Если выпало 3 очка, то на второй кости: {4;5;6} - 3 варианта
Если выпало 4 очка, то на второй кости: {5;6} - 2 варианта
Если выпало 5 очков, то на второй кости: {6} - 1 вариант
Всего вариантов: 5+4+3+2+1=15
P = m/n
где m - число благоприятных исходов; n - число всевозможных исходов
m = 15;
n = 36
P = 15/36 = 5/12
Поделитесь своими знаниями, ответьте на вопрос:
На вас последняя надежда, я умоляю мне, умоляю выражение (3abc)^3(-) 9a^2b^2c^2
{ 25-х² ≥0,
{2x-11>0,
{25-х² ≤ (2х-11) ² .
Решим каждое неравенство системы.
1) 25-х² ≥0,
(5-х)(5+х)≥0, метод интервалов
- - - [-5][5] - - - . Тогда х принадлежит [-5;5].
2) 2x-11>0,
2х>11 , >5,5 .Тогда х принадлежит (5,5 ; + бесконечно).
3) 25-х² ≤ (2х-11) ²
25-х² ≤ 4х²-44 х+1121,
5х²-44 х+96≥0. Найдём нули квадратного трехчлена
5х²-44 х+96=0, D=16, x1=4, x2=4,8.
5(x-4) (x-4,8) ≥0, метод интервалов
[4]- - - - [4,8] . Тогда х принадлежит (- беск;4) и (4,8 ; + беск).
Получили
{-5≤ х≤5,
{ х>55,5 ,
{х<4 х>4,8 ⇒ х принадлежит пустому множеству.
ответ решений нет.