Решение.
Если у=х²-3х , то неравенство y<0 равносильно неравенству
х²-3х<0 . Решим его методом интервалов.
Разложим на множители левую часть неравенства, получим
х·(х-3)<0
Найдём нули функции (произведения), записанной в левой части неравенства. Это те значения х, при которых левая часть обращается в 0 . Это будет при х=0 или при х-3=0 , х=3.
Нанесём нули функции на числовую ось (0)(3)
и подсчитаем знаки функции на полученных интервалах .
Для этого берём какую-нибудь точку из интервала и считаем знак функции .
Пусть х= -10, тогда х·(х-3)= -10·(-10-3)= -10·(-13)>0 . Ставим знак (+) в левом интервале (-∞ ; 0 ) .
Пусть х= 1, тогда х·(х-3)=1·(1-3)=1·(-2)<0 . Ставим знак (-) в среднем интервале ( 0 ; 3 ) .
Пусть х= 10, тогда х·(х-3)=10·(10-3)=10·7>0 . Ставим знак (+) в правом интервале ( 3 ; +∞ ) .
Получили + + + (0) - - - (3) + + +
Так как задано неравенство со знаком < , то смотрим, в каком промежутке записан знак минус и пишем ответ.
ответ: х ∈ ( 0 ; 3 ) .
Так как a, b, c - натуральный, то все они положительные.
Имеем: одно положительное слагаемое: a. И два отрицательных: -3b и -5c.
Логично, что для того, чтобы получить наибольший результат надо из как можно большего числа вычесть как можно меньшие.
Наибольшее двузначное число - это 99, значит a = 99
Два наименьших двузначных числа - это 10 и 11. Теперь надо понять, что из этого будет b, а что c. Так как при c стоит наименьший коэффициент (-5), значит c должно быть более маленьким числом, чтобы меньше повлиять на результат. Значит c = 10, b = 11
Итого: 99 - 3 * 11 - 5 * 10 = 99 - 33 - 50 = 99 - 83 = 16
ответ: 16
Поделитесь своими знаниями, ответьте на вопрос:
Найдите tga, если известно, что cosa =2/√5, 0