минимальное x-y когда х минимум y максимум = (1 - √61)/2 - (1 + √61)/2 = 1/2 - √61/2 - 1/2 - √61/2 = - √61
Gennadievna bessonov
25.03.2023
Хд сделал 2 за час x+10 д сделал 1 за час 540/х+10 часов работал 1 600/х часов работал 2 600/х - 540/х+10 настолько меньше работал 1 чем 2 600/х -540/х+10 =12 (общ. знам х*(х+10) ) 600*(х+10)-540х=12х(х+10) 600х+6000-540х-12х²-120х=0 -12х²-60х+6000=0 х²+5х-500=0 d=5²-4*1*500=25+2000=2025 х1=-5-45)/2=-25 х2=-5+45)/2=40/2=20 -25 не соответствует условию 20 д за 1 час делал 2 рабочий 0твет 20 деталей
x^2-x=15
x^2-x-15=0
d=1 + 60 = 61
x12=(1 +- √61)/2
y^2-y=15
y^2-y-15=0
d=(1 + 60) = 61
y12=(1 +- √61)/2
минимальное x-y когда х минимум y максимум = (1 - √61)/2 - (1 + √61)/2 = 1/2 - √61/2 - 1/2 - √61/2 = - √61