ответ:1) х^2 + 5х = 0;
х * (х + 5) = 0.
Приравняем каждый множитель к нулю:
х = 0;
х + 5 = 0;
х = -5.
2) х^2 - 9 = 0;
х^2 = 9;
х = √9;
х = ±3.
3) 2х^2 - 11 = 0;
2х^2 = 11;
х^2 = 11 : 2;
х^2 = 5,5;
х = √5,5.
4) х^2 + 12х + 36 = 0.
D = b^2 - 4ac = 144 - 4 * 1 * 36 = 0.
D = 0, уравнение имеет один корень.
х = -b/2a = -12/2 = -6.
5) x^2 - 6x + 9 = 0.
D = b^2 - 4ac = 36 - 4 * 1 * 9 = 0.
x = -b/2a = 6/2 = 3.
6) x^2 + 4x + 3 = 0.
D = b^2 - 4ac = 16 - 4 * 1 * 3 = 4.
D > 0, уравнение имеет два корня.
х1 = (-b + √D)/2a = (-4 + 2)/2 = -1.
x2 = (-b - √D)/2a = (-4 - 2)/2 = -3.
Объяснение:
1. Преобразуем:
{cosx * cosy = 1/4; (1)
{ctgx * ctgy = -3/4; (2)
{cosx * cosy = 1/4;
{(cosx / sinx) * (cosy / siny) = -3/4;
{cosx * cosy = 1/4;
{(cosx * cosy) / (sinx * siny) = -3/4;
{cosx * cosy = 1/4;
{(1/4) / (sinx * siny) = -3/4;
{cosx * cosy = 1/4;
{1 / (sinx * siny) = -3;
{cosx * cosy = 1/4;
{sinx * siny = -1/3;
{cos^2(x) * cos^2(y) = 1/16;
{sinx * siny = -1/3.
2. Обозначим:
sinx = p;
siny = q;
{(1 - p^2)(1 - q^2) = 1/16;
{pq = -1/3;
{1 - q^2 - p^2 + p^2q^2 = 1/16;
{pq = -1/3;
{1 - q^2 - p^2 + 1/9 = 1/16;
{pq = -1/3;
{p^2 + q^2 = 151/144;
{pq = -1/3;
{(p + q)^2 - 2pq = 151/144;
{(p - q)^2 + 2pq = 151/144;
{(p + q)^2 + 2/3 = 151/144;
{(p - q)^2 - 2/3 = 151/144;
{(p + q)^2 = 55/144;
{(p - q)^2 = 247/144;
{p + q = ±√55/12; (3)
{p - q = ±√247/12. (4)
Обозначим:
√247/24 + √55/24 = s;
√247/24 - √55/24 = r;
arcsin(s) = α;
arcsin(r) = β.
Сложением и вычитанием уравнений (3) и (4) для каждого из четырех случаев найдем значения p и q:
1) (p; q) = (-s; r);
2) (p; q) = (r; -s);
3) (p; q) = (-r; s);
4) (p; q) = (s; -r).
Из уравнения (1) следует, что косинусы имеют одинаковый знак, поэтому для x и y выбираем одновременно левые или правые четверти:
1) (x; y) = (-α + 2πk; β + 2πk); (π + α + 2πk; π - β + 2πk);
2) (x; y) = (β + 2πk; -α + 2πk); (π - β + 2πk; π + α + 2πk);
3) (x; y) = (-β + 2πk; α + 2πk); (π + β + 2πk; π - α + 2πk);
4) (x; y) = (α + 2πk; -β + 2πk); (π - α + 2πk; π + β + 2πk).
Объяснение:
должно быть правельно
Поделитесь своими знаниями, ответьте на вопрос:
y=x^2-4mx+m
xв=4m/2=2m
yв=(2m)^2-4m*2m+m=4m^2-8m^2+m=-4m^2+m=-4m(m-1/4)
y=x^2+8mx+4
xв=-8m/2=-4m
yв=(-4m)^2+8m*(-4m)+4=16m^2-32m^2 +4=-16m^2+4=-16m(m-1/4)
оси парабол направлены вверх, т.к. коэффициенты при х в квадрате больше нуля. чтобы обе параболы лежали по одну сторону от оси ох необходимо, чтобы ординаты их вершин были больше нуля.
-4m(m-1/4)> 0
-16m(m-1/4)> 0
такое возможно только когда m принадлежит (0; 1/4)