1. область определения функции (-бесконечность; 3) и (3; бесконечность) 2. множество значений функции (-бесконечность2] [10; бесконечность) 3. проверим является ли данная функция четной или нечетной: у (х) = (x^2-5)/(х-3) y(-х) = (x^2-5)/(-х-3) так как у (х) не =у (-х) , и у (-х) не=-у (х) , то данная функция не является ни четной ни нечетной. 4. найдем промежутки возрастания и убывания функции и точки экстремума. y'(x) = (x^2-6x+5)/(x-3)^2; y'(x) = 0 (x^2-6x+5)/(x-3)^2=0 x^2-6x+5=0 х1=5; х2=1. данные стационарные точки и точка разрыва, разбили числовую прямую на 4 промежутка так как на промежутках (1; 3) и (3; 5) производная отрицательна, то на этих промежутках функция убывает так как на промежутках (-бесконечность; 1) и (2; бесконечность) производная положительна, то на этих прмежутках функция возрастает. х=5 точка минимума, у (5) = 10 х=1 точка максимума, у (1) = 2 5. найдем точки перегиба функции и промежутки выпуклости: y"(x) = 8/(х-3)^3; y"(x)=0 8/(х-3)^3=0 уравнение не имеет корней. так как на промежутке (3; бесконечность) вторая производная положительна, то график направлен выпуклостью вниз так ак на промежутке (-бесконечность; 3) вторая производная отрицательна то график направлен выпуклостью вверх. точек перегиба функция не имеет. 6. проверим имеет ли график функции асмптоты: а) вертикальные: для этого найдем односторонние пределы в точке разрыва х=3 lim(x стремится к 3 по недостатку) ((x^2-5)/(х-3)=-бесконечность lim(x стремится к 3 по избытку) ((x^2-5)/(х-3)=бесконечность следовательно прямая х=3 является вертикальной асимптотой. б) налонные вида у=кх+в: к=lim y(x)/x = lim(x стремится к бесконечности) ((x^2-5)/(х (х-3))=1 в = lim (y(x)-kx) = lim ((x^2-5)/(х-3)-х) =lim(3x-5)/(x-3)=3 cледовательно прямая у=х+3 является наклонной асимптотой. 7. все строй график.
Vipnikavto58
13.08.2021
делим на 3 получим: 7х^2+13x-2< 0 d=15^2 x1=1\7 x2=-2 7х^2+13x-2=(x-1\7)(x+2) (x-1\7)(x+2)< 0 получаем: отсюда x будет принадлежать: (-2; 1/7).но на этом решение не заканчивается, т.к. мы решили только первое неравенство системы неравенств.чтобы решить систему неравенств, нам потребуется найти все общие решения всех уравнения\неравенства системы или установить, что их нет.второе неравенство системы это x> 0.находим объединение этих решений: х принадлежит промежутку (0; 1/7)