Nazart44446
?>

Решить уравнение: 1) sinx+cosx=1 2) sin3x+cos3x=√2

Алгебра

Ответы

info46
решение в приложении:


Решить уравнение: 1) sinx+cosx=1 2) sin3x+cos3x=√2
kit036

-3.

Объяснение:

√(6 -2√5) - √(9+4√5) =

Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:

6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =

(√5 -1)^2.

9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =

(√5 + 2)^2.

Именно поэтому решение запишется так:

√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l

Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:

(√5 - 1) - (√5 + 2) =

Упрощаем получившееся выражение:

√5 - 1 - √5 - 2 = -1 -2 = -3.

ответ: -3.

Использованные тождества:

а^2 - 2аb + b^2 = (a-b)^2;

а^2 + 2аb + b^2 = (a+b)^2;

√(a)^2 = lal.

zu87zu87

* * * * * * * * * * * * * * * * * *  * * * * * * *

Решите  систему  уравнений  { 3xy -x =5 ; 3xy -y= 4

ответ:  (x₁ ; y₁) = ( -5/3   ;  -2/3 )  ; ( x₂ ;  y₂) = (1 ; 2) .

           

Объяснение:

{ 3xy -x =5 ; 3xy -y= 4 . ⇔ { 3xy -x-(3xy -y) = 5 - 4 ; 3xy -x =5 . ⇔

{ y=x+1 ; 3xy - x =5 .⇔ { y=x+1 ; 3x(x+1) - x -5 =0 .⇔ { y=x+1 ; 3x²+2x -5 =0 .

3x²+2x -5 =0  

D₁= D/4 =( 2/2)² - 3*(-5) =1²+15 =16 = 4²  ;  x = (-1 ± √D₁)/3

⇒ x₁  =  (-1 -4) /3 = - 5/3  ⇒ y₁ = x₁+1 = -5/3+1 = -2/3  

   x₂  =  (-1 +4) /3 = 1        ⇒  y₂  = x₂+1 =1 +1  = 2 .

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решить уравнение: 1) sinx+cosx=1 2) sin3x+cos3x=√2
Ваше имя (никнейм)*
Email*
Комментарий*