а) sqrt(7)-sqrt(5) ??? sqrt(13)-sqrt(11) умножим обе части на (sqrt(7)+sqrt(5))(sqrt(13)+sqrt(11)) > 0 и обнаружим разность квадратов (7-5)(sqrt(13)+sqrt(11) ??? (13-11)(sqrt(7)+sqrt(5)) 2(sqrt(13)+sqrt(11) ??? 2(sqrt(7)+sqrt(5)) очевидно, что sqrt(13)>sqrt(7) и sqrt(11)>sqrt(5) значит левая часть больше правой б) (sqrt(2) - 2) x > sqrt(2) + 2 умножим обе части на (sqrt(2) + 2) >0 (sqrt(2) + 2)((sqrt(2) - 2)) x > (sqrt(2) + 2)^2 (2-4)x > 2+4sqrt(2)+4 x<-3-2sqrt(2) правая часть ~ -5.8 наибольшее целое x = -6
gunel1988alieva
16.01.2022
Пусть первая бригада выполняет за смену х деталей, вторая бригада у деталей, третья бригада z - деталей. Тогда за смену три бригады выполняют вместе х+у+z=100 деталей (1). По условию у-х=5 и у-z=15. По-другому х=у-5 и z=y-15. Подставим в первое уравнение эти значения вместо х и z, получим у-5+у+y-15=100 3у-20=100 3у=100+20 3у=120 у=120:3 у=40 деталей в смену изготавливает вторая бригада. х=у-5=40-5=35 деталей в смену изготавливает первая бригада. z=у-15=40-15=25 деталей в смену изготавливает третья бригада. Проверка х+у+z=35+40+25=100. Всего 100 деталей изготавливают три бригады.
ответ: 35 деталей в смену изготавливает первая бригада, 40 деталей в смену изготавливает вторая бригада, 25 деталей в смену изготавливает третья бригада.