Из формулы боковой поверхности цилиндра выразим радиус основания: Sб =2πRH 2πRH=48π R=48π\2πH=24\H В формулу объёма цилиндра вместо радиуса подставим 24\Н и найдём высоту : V=πR²H π(24\H)²·H=96π 24²\H=96 H=576\96 H=6 ответ:6см
Elen-ti81459
16.07.2020
1) Пусть t=sinx, где t€[-1;1], тогда 2t^2+t-1=0 t1=(-1-3)/4=-1 t2=(-1+3)/4=1/2 Вернёмся к замене sinx=-1 x=-Π/2+2Πn, n€Z sinx=1/2 x1=Π/6+2Πm, m€Z x2=5Π/6+2Πm, m€Z ответ: -Π/2+2Πn, n€Z; Π/6+2Πm, 5Π/6+2Πm, m€Z 2) 6cos^2x+cosx-1=0 Пусть t=cosx, где t€[-1;1], тогда 6t^2+t-1=0 t1=(-1-5)/12=-1/2 t2=(-1+5)/12=1/3 Вернёмся к замене: cosx=-1/2 x=+-arccos(-1/2)+2Πn, n€Z cosx=1/3 x=+-arccos(1/3)+2Πm, m€Z ответ: +-arccos(-1/2)+2Πn, n€Z; +-arccos(1/3)+2Πm, m€Z 3) 2cos^2x+sinx+1=0 2(1-sin^2x)+sinx+1=0 -2sin^2x+sinx+3=0 Пусть t=sinx, где t€[-1;1], тогда -2t^2+t+3=0 t1=(-1-5)/-4=-1,5 посторонний, т.к. t€[-1;1] t2=(-1+5)/-4=-1 Вернёмся к замене sinx=-1 x=Π/2+2Πn, n€Z ответ: Π/2+2Πn, n€Z
Gpack54
16.07.2020
Уравнение прямой, проходящей через две точки (x1;y1) (x2;y2)^ (x-x1)\(x2-x1)=(y-y1)\(y2-y1) (x-x1)\(x2-x1)*(y2-y1)+y1=y (если x1 не равно x2, y2 не равно y1) Уравнение прямой AB y=(x-2)\(-1-2)*(4-1)+1=2-x+1=-x+3 угловой коэфициент равен -1 Уравнение прямой AC y=(x-2)\(3-2)*(-2-1)+1=6-3x+1=-3x+7 угловой коэфициент равен -3 Уравнение прямой BC y=(x+1)\(3+1)*(-2-4)+4=-3\2x-3\2+4=-3\2x+5\2 угловой коэфициент равен -3\2
у перпендикулярных прямых произведение угловых коэфициентов равно -1 поэтому угловой коээфициент высоты AH1, равен -1\(-3\2)=2\3 угловой коээфициент высоты BH2, равен -1\(-3)=1\3 угловой коээфициент высоты CH3, равен -1\(-1)=1
Уравнение прямой имеет вид y=kx+b Ищем уравнение прямой, проходящей через высоту AH1, (она проходит через точку А) 1=2\3*2+b, b=-1\3 y=2\3x+1\3 Ищем уравнение прямой, проходящей через высоту BH2, (она проходит через точку B) 4=1\3*(-1)+b, b=13\3 y=1\3x+13\3 Ищем уравнение прямой, проходящей через высоту CH3, (она проходит через точку C) -2=1*3+b, b=-5 y=x-5
ответ: уравнения прямых, проходящих через высоты AH1, BH2, CH3 соотвественно y=2\3x+1\3 ,y=1\3x+13\3 , y=x-5
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найти высоту цилиндра если площадь его боковой поверхности 48псм2 а v=96псм3
Sб =2πRH
2πRH=48π
R=48π\2πH=24\H
В формулу объёма цилиндра вместо радиуса подставим 24\Н и найдём высоту : V=πR²H
π(24\H)²·H=96π
24²\H=96
H=576\96
H=6
ответ:6см