1.
1)
38² - 64 = 38² - 8² = (38 - 8)(38 +8) = 30 * 46 = 1380,
2.
1)
2в² - 18 = 2 * (в² - 9) = 2 * (в - 3)(в + 3),
3)
81х² - 18ху + у² + 63х - 7у = (81х² - 18ху + у²) + (63х - 7у) =
= (9х - у)² + 7*(9х - у) = (9х - у)(9х - у + 7),
4)
m² + n² + 2mn = (m + n)².
3.
а)
(8 - 2n)(8 + 2n) + (9 + 2n)² - 64 = 64 - 4n² + 81 + 36n + 4n² - 64 =
= 36n + 81 = 9(4n + 9),
б)
(3х - 8)² + (4х - 8)(4х + 8) = 9х² - 48х + 64 + 16х² - 64 = 25х² - 48х,
при х=-2:
25 * (-2)² - 48 * (-2) = 100 + 96 = 196,
4.
1 число - х,
2 число - (х+2),
(х+2)² - х² = 188,
х² + 4х + 4 - х² = 188,
4х = 184,
х = 46 - 1 число,
х+2 = 46+2 = 48 - 2 число
1. С графика квадратичной функции.
x² + 3x - 18 < 0.
Рассмотрим функцию у = х² + 3х - 18. Графиком этой функции является парабола, ветви которой направлены вверх.
Выясним, как расположена эта парабола относительно оси Ох. Для этого решим уравнение х² + 3х - 18 =0:
D = 3² - 4 · 1 · (-18) = 9 + 72 = 81; √81 = 9
х₁ = (-3 + 9)/(2 · 1) = 6/2 = 3,
х₂ = (-3 - 9)/(2 · 1) = -12/2 = -6.
Значит, парабола пересекает ось Ох в двух точках, абсциссы которых равны -6 и 3.
Покажем схематически, как расположена парабола в координатной плоскости (см. рис.) Из рисунка видно, что функция принимает отрицательные значения, когда х∈(-6; 3). Следовательно, множеством решений неравенства x² + 3x - 18 < 0 является промежуток (-6; 3).
2. Методом интервалов.
Метод интервалов применяется в случае, когда левая часть нервенства имеет многочлена, а правая равна 0. В этом случае находят корни многочлена, располагают их в порядке возрастания, наносят их на числовую ось, а затем справа налево располагают знаки "+" и "-", чередуя их, если корень некратный, и сохраняя знак, если корень кратный.
x² + 3x - 18 < 0
Разложим на множители многочлен x² + 3x - 18, для чего решим квадратное уравнение x² + 3x - 18 = 0:
D = 3² - 4 · 1 · (-18) = 9 + 72 = 81; √81 = 9
х₁ = (-3 + 9)/(2 · 1) = 6/2 = 3,
х₂ = (-3 - 9)/(2 · 1) = -12/2 = -6.
Значит, x² + 3x - 18 = (х - 3)(х + 6).
Отметим на координатной прямой точки -6 и 3 и укажем знаки многочлена на каждом из полученных интервалов (см. рис.).
Множество решений неравенства: х∈(-6; 3).
ответ:(-6; 3).
Поделитесь своими знаниями, ответьте на вопрос:
{4х+3y=1 {3x-2y=12 решите систему уравнений
4х+18+4,5х=1
4х+4,5х=1-18
8,5х=-17
х=-2