Здесь все уравнения будут решаться Дискриминантом. 1) -x^2+12x-35=0 (Перед квадратом минус,поменяв его на плюс все знаки в уравнении поменяются на противоположные) x^2-12x+ 35=0 D=b^2-4ac= (-12)^2-4*1*35= 144-140=4 (4 в корне =2) x1= -b+- /2a= 12+2/2=14/2=7 x2= 12-2/2=5 Дальше все так же как и сверху, просто пишу решения 2) y^2+16y+21=0 D=16^2-4*1*21= 256-84= 172 (Корень не извлекается, так и остается) y1= -16 - /2 y2= -16 - /2
Обычная косинусоида при x=0 имеет y=+1. Период 2 Пи =6.28. отложите его на оси. Сдвиг по фазе -30 градусов означает сдвиг всей кривой вправо на 1/6 полупериода или 1/12 периода (это чуть больше 0,5). отложите метки на оси. Коэффициент 2 растягивает результат по вертикали симметрично, а сдвиг -1 сдвигает вниз на 1. Окончательно кривая лежит между горизонталями +1 и -3
Реально надо бы рассчитать точку сдвига, помеченную крестом, и относительно неё строить с обычным периодом растянутую по вертикали косинусоиду. Этот процесс нужно только для понимания как строится такая кривая. А практически, вычисляем таблицу по формуле с малым шагом, откладываем точки на графике и соединяем плавно.
x(верш.)= , у(верш)= .