О – окуни;
Щ – щуки;
К – карпы;
«Окуней в 3 раза больше, чем остальной рыбы»;
О = 3·(Щ + К)
«Щук в 9 раз меньше, чем остальной рыбы»
9·Щ = О + К
Подставим О из первого уравнения во второе:
9·Щ = 3·(Щ + К) + К
9·Щ = 3·Щ + 3·К + К
9·Щ –3·Щ = 4·К
6·Щ = 4·К
3·Щ = 2·К
K = 3/2·Щ = 1,5·Щ
По условию подберём вес рыбы, нам не важно сколько там было, главное процентное соотношение.
Пусть Щ = 10 кг, тогда:
K = 1,5·10 = 15 кг
и
О = 3·(Щ + К) = 3·(10 + 15) = 3·25 = 75 кг
Найдём сколько процентов составляют карпы:
ответ: 15.
О – окуни;
Щ – щуки;
К – карпы;
«Окуней в 3 раза больше, чем остальной рыбы»;
О = 3·(Щ + К)
«Щук в 9 раз меньше, чем остальной рыбы»
9·Щ = О + К
Подставим О из первого уравнения во второе:
9·Щ = 3·(Щ + К) + К
9·Щ = 3·Щ + 3·К + К
9·Щ –3·Щ = 4·К
6·Щ = 4·К
3·Щ = 2·К
K = 3/2·Щ = 1,5·Щ
По условию подберём вес рыбы, нам не важно сколько там было, главное процентное соотношение.
Пусть Щ = 10 кг, тогда:
K = 1,5·10 = 15 кг
и
О = 3·(Щ + К) = 3·(10 + 15) = 3·25 = 75 кг
Найдём сколько процентов составляют карпы:
ответ: 15.
Поделитесь своими знаниями, ответьте на вопрос:
Исследуйте на монотонность функцию y=2-[x-1]
При
y1 = 2 - (x-1) = 3 - x для x > 1
y2 =2- (-х+1) = 2 + x - 1 = 1 + x для x < 1
В точке х=1 функции совпадают, значит в этой точке она меняет направление.
Берем производную.
y1' = -1 для x>1
y2' = 1 для x <1
Значение производной в точке x=1 отсутствует, значит это критическая точка.
В связи с этим функция возрастает (y' >0) на промежутке (-∞;1) и убывает (y'<0) на промежутке (1; +∞)