aguliaeva
?>

Период полувыведения препарата из организма составляет 8 часов, начальная доза 250 миллиграмм, требуется составить уравнение где x - время в часах, y - остаток препарата в организме в миллиграммах.

Алгебра

Ответы

srgymakarov
Y=250*2^(-x/8) - вот и вся формула
arnaut-anna
y=250/2 ^{x/8}
---------------------------------------------
Zimin1111
Дана функция у = (-1/3)x^3+x^2.
1-найти область определения функции и определить точки разрыва - ограничений нет, D = R, разрывов нет.
2-Выяснить является ли чётной или нечётной.
Проверим функци чётна или нечётна с соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
 f(-x) = (-1/3)x³ + x²  = (1/3)x³ + x² 
- Нет
 -f(-x) = -((-1/3)x³ + x²) = -((1/3)x³ + x²) = -(1/3)x³ - x² 
- Нет, значит, функция не является ни чётной, ни нечётной.
3-определить точки пересечения функции с координатными осями .
График функции пересекает ось X при f = 0
значит надо решить уравнение:
(-1/3)x³+ x² = 0.
-x³ + 3x² = 0.
-x²(x-3) = 0.
Имеем 2 корня: х = 0 и х = 3.
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в y = (-1/3)x^3 +x^2.
y = (-1/3)0³+0² = 0. Точка: (0, 0) 
4-найти критические точки функции.
Находим производную и приравниваем её нулю:
y' = -x²+2x = -x(x-2).
Имеем 2 критические точки: х = 0 и х = 2.
5-определить промежутки монотонности 
(возрастания,убывания).
Исследуем поведение производной вблизи критических точек.
х =                -0.5    0    0.5      1.5     2     2.5
y'=-x^2+2x   -1.25    0   0.75    0.75    0   -1.25
Где производная отрицательна - функция убывает, где положительна - функция возрастает.
Возрастает на промежутке
[0, 2]
Убывает на промежутках
(-oo, 0] U [2, oo)
6-определить точки экстремума.
Они уже найдены: это 2 критические точки: х = 0 и х = 2.
Где производная меняет знак с - на + это минимум функции, а где с + на - это максимум функции.
Минимум функции в точке: x = 0,
Максимум функции в точке: х = 2.
7 -определить максимальное и минимальное значение функции.
Значения функции в экстремальных точках:
х = 2, у = (-1/3)*2³+2² = -8/3 + 4  = 4/3,
х = 0, у = 0.
8- определить промежутки вогнутости и выпуклости кривой,найти точки перегиба.
Найдем точки перегибов, для этого надо решить уравнение
d2/dx2f(x)=0(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции,
d2/dx2f(x)= -2х + 2 =-2(x−1)=0
Решаем это уравнение
Корни этого ур-ния
x1=1
Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
(-oo, 1]
Выпуклая на промежутках
[1, oo)

Иследуйте функцию и постройте график: f (x)=-1/3x^3+x^2
shoora
А)
6x^2-7x+2>0
6x^2-3х-4х+2>0
3х*(2х-1)-2(2х-1)>0
(3х-2)*(2х-1)>0
{3х-2>0
{2х-1>0

{3х-2<0
{2х-1<0

{х>2/3
{х>1/2

{х<2/3
{х<1/2
Х принадлежит (2/3, +бесконечность)
Х принадлежит (-бесконечность, 1/2)
Х принадлежит (-бесконечность, 1/2) U Х принадлежит (2/3, +бесконечность)

в)
8x^2+10x-3 <0
8x^2+12-2х-3<0
4х*(2х+3)-(2х+3)<0
(4х-1) *(2х+3)<0
{4х-1<0
{2х+3>0

{4х-1>0
{2х+3<0

{х<1/4
{х>-3/2

{х>1/4
{х<-3/2
Х принадлежит (-3/2, 1/4)
Х принадлежит Ø
Х принадлежит (-3/2, 1/4)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Период полувыведения препарата из организма составляет 8 часов, начальная доза 250 миллиграмм, требуется составить уравнение где x - время в часах, y - остаток препарата в организме в миллиграммах.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

vadimnechaev23150
Вычислить 5/2-x - x+3/2-x!
Polina780
lanac3po
mikhailkirakosyan
garikman-flesh486
Киларджиева Диана440
infooem
Svetlana1884
tanias
anastasiavilina
Алена-Петрова285
Andrei
rusmoney92
Павловна897
ltdfoliant62