Если примем,что равно нулю,то отсюда: cosx-√3/2=0 cosx=√3/2 x=плюс минус π/6 + 2πn,n∈z это решение уравнения. ищем корни,для этого подставляем это решение в промежуток от [0; 3 пи].0≤плюс минус π/6 + 2πn≤3π переносим пи деленное на 6 влево и вправо,выражаем n: так как мы брали n только четные,минус пропадал,то решений нет. аналогично повторяем со второй частью,только n берем нечетные,т е в решении минус сохраняется: тоже нет решений. итог: это уравнение не имеет решений либо просто оно неверно написано.
Попов1946
21.02.2022
Решение данного уравнения основано на том, чтобы узнать, насколько хорошо усвоена теорема виета. при этом надо учесть, что эта теорема относится только к тем уравнениям, где коэффициент перед х²=1. поэтому приводим уравнение к виду, показанном во втором действии. напомним теорему виета. х1+х2= -b; х1×х2=с где b-это коэффициент перед х, а с- известное нам число. но в решении я указала эти значения со штрихом, чтобы не спутать с заданными в уравнении. ну а дальше думаю по решению будет ясно, просто для начала находим а, а потом подставив находим и б. возникнут вопросы или что-то неясное - обращайтесь. удачи!
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Разложите на множители квадратные трехчлены: 4y^2+3y-7
4y^2+3y-7=4y^2+3y-3-4=4y^2-4+3y-3=4(y^2-1)+3(y-1)=
=4(y-1)(y+1)+3(y-1)=(y-1)(4y+4)+3(y-1)=(y-1)(4y+4+3)=
=(y-1)(4y+7)