План действий такой: 1) ищем производную 2) приравниваем её к нулю и решаем получившееся уравнение 3) Смотрим: какие корни попали в указанный промежуток и ищем значения данной функции в этих точках и на концах данного отрезка; 4) пишем ответ. Поехали? 1) f'(x) = ((x² -8x)'(x+1) - (x² -8x)(x+1)')/(x+1)²= ((2x-8)(x+1) - (x²-8x))/(x+1)²= (2x² -8x +2x -8 - x² +8x)/(x+1)²= =(x² +2x -8) / (х+1)² 2)(x² +2x -8) / (х+1)² ⇒ x² +2x -8 =0, ⇒ х = - 4 и х = 2 3) Из найденных корней в указанный промежуток попало х = -4 а) х = -4 f(-4) = (-4)² -8*(-4) /(-4+1) = 48/(-2) = -24 б) х = -5 f(-5) = (-5)² -8*(-5) /(-5+1) = 65/(-4) = -13,75 в) х = -2 f(-2) = (-2)² -8*(-2)/(-2+1) = 20/(-1) = -20 4) maxf(x) = f((-2) = -20 minf(x) = f(-4) = -24
Svetlana191
11.07.2021
Положим что такое возможно. Пусть k наименьшее общее кратное,а f наибольшый общий делитель.Тогда наши числа представимы в виде: a=k*n b=k*m По теореме о связи между НОК и НОД : k*f=a*b. Оно и очевидно. Тогда получим: k+k*m+k*n+k*m*n=999999 k*(1+m+n+m*n)=999999 k*(1+m)*(1+n)=999999 (нечетно) Тк произведение всех множителей нечетно,только когда все множители нечетны,то наименьшее общее кратное k также нечетно. А вот тк числа m+1 и n+1 тоже нечетным,то числа m и n четны,откуда следует четность чисел a и b. Но тогда очевидно что для этих чисел наименьшее общее кратное равно 2,что не является нечетным числом. То есть мы пришли к противоречию. Значит такое невозможно.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Чи є арифметичною прогресією послідовність ( у разі позитивної відповіді вкажіть різницю прогресії) 1) 24, 22, 20, 18 2)16, 17, 19, 23 3)-3, 2, 7, 12