По условию b1; b1*q; b1*q^2; b1*q^3 возрастающая геометрическая прогрессия; b1 не равно 0; q не равно 1 и q >0; должно выполняться неравенство: b1*q>b1; b1*q-b1>0; b1*(q-1)>0; возможны две системы неравенств; первая: b1>0 q-1>0 b1>0 q>1 вторая: b1<0 q-1<0 b1<0 q<1 К этим системам вернёмся, Когда получим значение q; По условию b1; b1*q; b1*q^3 арифметическая прогрессия; должно выполняться равенство: b1*q - b1=b1*q^3 - b1*q; b1*(q-1)=b1*q*(q^2-1); q-1=q*(q-1)*(q+1); 1=q*(q+1); (b1 не равно 0; g не равно 1); q^2+q-1=0; D=1^2-4*(-1)=1+4=5; q1=(-1+√5)/2; q2=(-1-√5)/2; q2 не подходит, так как q2<0 (прогрессия возрастающая и q>0); q1 подходит; 0ответ: (-1+√5)/2
а) 2x^2-11x+12=0
2x^2-3x-8x+12=0
(2x-3)*(x-4)=0
2x-3=0 или x-4=0
2x=0+3 x=4
2x=3
x=3:2
x=1,5
б) 14x^2=9x
14x^2-9x=0
x(14x-9)=0
x=0 или 14x-9=0
x=9/14
в) 16x^2-49=0
16x^2=49
x^2=49:16
x^2=49/16
x=±7/4
г) x^2-36x+323=0
x(x-17)-19(x-17)=0
(x-17)(x-19)=0
x-17=0 или x-19=0
x=17 x=19
2.
p=46=2(a+b) все это делим на 2 чтобы от нее избавиться
23=a+b
b=23-a
s=120=ab
120=a(23-a)
120=23a-a^2
-a^2+23a-120=0
d=23^2-480=529-480=49
x1== -23-7/-2=-30/-2=15
x2==-23+7/-2=-16/-2=8
3.x^2+px=36=0 (a=1; b=p; c=36)
d=p^2-144
12=
p=-15
x2==15-9/2=6/2=3
Поделитесь своими знаниями, ответьте на вопрос:
Вычислите 5^(2n+7)*25^(2n-2)все это деленная на 125^(2n)
=5^(2n+7)*5^(4n-4)/5^(6n)=5^(2n+7+4n-4-6n)=5^3=125.