Описание функции по ее графику.
Объяснение:
a)
D(f)=[-6;3]
b)
E(f)=[-3;7]
c)
f(x)>0,
если х€[-6;-5)обьед.(-1; 3]
f(x)<0,
если х€(-5; -1)
d)
Максимального значения функция
достигает в точке х=-6.
fmax(-6)=7
В точке х=1 функция достигает ло
кального максимума f(1)=4, но полу
ченное значение не будет max во
всей обрасти определения. Макси
мального значения функция дости
гает в точке х=-6, которая лежит на
границе области определения.
е) Функция не является ни четной
ни нечетной ( функция общего вида).
Если функция четная, то график
симмметричен относительно ОУ.
Если функция нечетная, то график
симметричен относительно точки
начала отсчета (0; 0).
На чертеже график не имеет сим
метрии ==> имеем функцию обще
го вида.
Объяснение:
Построить график функции
у=2×|х|+3
Шаг 1.
Строим график функции
у=|х|
Графиком являются биссектрисы
1 и 2 координатных четвертей.
Весь график расположен в верхней
полуплоскости.
Шаг 2.
Нужно изменить угол наклона вет
вей графика.
Построим и заполним таблицу:
у=2×|х|
х 0 -2 2
у 0 4 4
Строим график фунеции
у=2×|х|.
Шаг 3.
Строим график функции
у=2×|х|+3
График функции у=2×|х| поднимаем
вверх на 3 единицы ( совершаем па
раллельный перенос вдоль положи
тельного направления ОУ на 3ед. от
резка).
Построен искомый график.
Поделитесь своими знаниями, ответьте на вопрос:
Решите уравнение x^2 - 4x + 4 = (2 - x)(x^2 + 3x - 4)
(х-2)^2=(2-x)*(x^2 + 3x - 4)
и получаем одно решение х=2.
При х не равно 2 делим все на (х-2)
и получаем х-2=-x^2 -3x +4
x^2 + 4x = 6
x^2 + 4x +4=10
(х+2)^2=10
Еще два решения : х=-2+sqrt(10) и x=-2-sqrt(10)
ответ: Три решения : х=2; х=-2+sqrt(10) и x=-2-sqrt(10)