qcrv15312
?>

За первый день вася прочел 8/15 страниц книги, за второй день-5/12 страниц книги и за третий день -оставшиеся 12 страниц.сколько страниц в этой книге? ! погите

Алгебра

Ответы

Матфеопуло1006
За 1+2 дни Вася прочитал \frac{8}{15}+\frac{5}{12}=\frac{32+25}{60}=\frac{57}{60} книги.
Осталось прочитать  1-\frac{57}{60}=\frac{3}{60}=\frac{1}{20} книги,
 что cоcтавляет 12 страниц. Тогда в целой книге

12: \; \frac{1}{20}=12\cdot 20=240 .

 Можно было составить пропорцию:  1 книга  -  х стр.
                                                             1/20      -  12 стр.
     x=\frac{12\cdot 1}{1/20}=240
mrilyushchenko6

1. Здесь в условии опечатка, скорее всего в точке x₀ = -1.

Прямая y=x-2 касается графика функции y=f(x) в точке x₀ = -1, то эта точка является общей для обеих функций, тогда f(-1) = -1-2=-3


ответ: -3.


2. Производная функции f'(x)=(-2x^2+8x-3)'=-4x+8

f'(0)+f'(-1)=-4\cdot0+8-4\cdot(-1)+8=16


ответ: 16.


3. y'=\dfrac{(x)'\sqrt{x+1}+x(\sqrt{x+1})'}{(\sqrt{x+1})^2}=\dfrac{\sqrt{x+1}+x\cdot\frac{1}{2\sqrt{x+1}}}{x+1}=\dfrac{3x+2}{2(x+1)\sqrt{x+1}}


4. Производная функции: f'(x)=(2x^3-5x)'=6x^2-5

Используем геометрический смысл производной: f'(x₀) = tgα

tg\alpha=f'(2)=6\cdot2^2-5=19


ответ: 19.


5. f'(x)=(x^2-1)'(x^2+1)+(x^2-1)(x^2+1)'=2x(x^2+1)+2x(x^2-1)=\\ \\ =2x^3+2x+2x^3-2x=4x^3


6. f(x)=(1-2x)(2x+1)=(1-2x)(1+2x)=1-4x^2

Производная функции: f'(x)=(1-4x^2)'=-8x. Производная функции в точке 1, равна f'(1)=-8\cdot1=-8


7. Производная функции: f'(x) = 1/2√x, ее значение в точке х=1 равна 1/2. Тогда касательная: y = f'(x0)(x-x0) + f(x0) = 1/2 * (x-1) + 1 = x/2 + 1/2


y(31) = 31/2 + 1/2 = 32/2 = 16


ответ: 16.


8. f'(x)=(x^2)'+(\sqrt{x})'=2x+\dfrac{1}{2\sqrt{x}}

restkof

1. Здесь в условии опечатка, скорее всего в точке x₀ = -1.

Прямая y=x-2 касается графика функции y=f(x) в точке x₀ = -1, то эта точка является общей для обеих функций, тогда f(-1) = -1-2=-3


ответ: -3.


2. Производная функции f'(x)=(-2x^2+8x-3)'=-4x+8

f'(0)+f'(-1)=-4\cdot0+8-4\cdot(-1)+8=16


ответ: 16.


3. y'=\dfrac{(x)'\sqrt{x+1}+x(\sqrt{x+1})'}{(\sqrt{x+1})^2}=\dfrac{\sqrt{x+1}+x\cdot\frac{1}{2\sqrt{x+1}}}{x+1}=\dfrac{3x+2}{2(x+1)\sqrt{x+1}}


4. Производная функции: f'(x)=(2x^3-5x)'=6x^2-5

Используем геометрический смысл производной: f'(x₀) = tgα

tg\alpha=f'(2)=6\cdot2^2-5=19


ответ: 19.


5. f'(x)=(x^2-1)'(x^2+1)+(x^2-1)(x^2+1)'=2x(x^2+1)+2x(x^2-1)=\\ \\ =2x^3+2x+2x^3-2x=4x^3


6. f(x)=(1-2x)(2x+1)=(1-2x)(1+2x)=1-4x^2

Производная функции: f'(x)=(1-4x^2)'=-8x. Производная функции в точке 1, равна f'(1)=-8\cdot1=-8


7. Производная функции: f'(x) = 1/2√x, ее значение в точке х=1 равна 1/2. Тогда касательная: y = f'(x0)(x-x0) + f(x0) = 1/2 * (x-1) + 1 = x/2 + 1/2


y(31) = 31/2 + 1/2 = 32/2 = 16


ответ: 16.


8. f'(x)=(x^2)'+(\sqrt{x})'=2x+\dfrac{1}{2\sqrt{x}}

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

За первый день вася прочел 8/15 страниц книги, за второй день-5/12 страниц книги и за третий день -оставшиеся 12 страниц.сколько страниц в этой книге? ! погите
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Окунева-Мотова
D-posilochka
mdsazonovatv1173
drappaeva68
veronica1344
ilyagenius
M19026789436
sharovaeln6
Тоноян
Maksim Dmitrii1579
Стяжкин
annanas08
olechka197835
Владислав-Александр32
alapay