1. Видимо, пример б) или г) решен верно, потому что а) и в) решены оба неверно.
2. а) -2,3 - (-7,4) = 5,1
3. 4,3 - (0,43 + с) = 4,3 - 0,43 - с = 3,87 - с
При с = -2,3 будет 3,87 - (-2,3) = 3,87 + 2,3 = 6,17
ответ а) 6,17
4. x - 4,6 = -9,3
x = -9,3 + 4,6 = -4,7
ответ б) -4,7
5. -y + 2,92 = 0,3
2,92 - 0,3 = y
y = 2,62
ответ а) 2,62
6. -1+2-(-3)+(-4)-5 = 1 + 3 - 4 - 5 = -5
ответ: г) свой ответ
7. 0,45 - x - 3,8 = -x - 3,35
При x = -1,38 будет -x - 3,35 = 1,38 - 3,35 = -1,97
ответ б) -1,97
8. x + 67 - 60 = -98
x + 7 = -98
x = -98 - 7 = -105
ответ а) -105
9. |x + 2| = 5
x + 2 = -5; x1 = -7
x + 2 = 5; x2 = 3
ответ б) 3 и -7
10. -17 < n < 14
Подходят n = -16; -15; -14; ... -1; 0; 1; ...; 13
Сумма всех этих чисел
S = -16-15-14-13...-1+0+1+2+...+13 = -16 - 15 - 14 = -45
ответ: -45
С применением степени
(квадрат и куб) и дроби
Квадратный корень
sqrt(x)/(x + 1)Кубический корень
cbrt(x)/(3*x + 2)С применением синуса и косинуса
2*sin(x)*cos(x)Арксинус
x*arcsin(x)Арккосинус
x*arccos(x)Применение логарифма
x*log(x, 10)Натуральный логарифм
ln(x)/xЭкспонента
exp(x)*xТангенс
tg(x)*sin(x)Котангенс
ctg(x)*cos(x)Иррациональне дроби
(sqrt(x) - 1)/sqrt(x^2 - x - 1)Арктангенс
x*arctg(x)Арккотангенс
x*arсctg(x)Гиберболические синус и косинус
2*sh(x)*ch(x)Гиберболические тангенс и котангенс
ctgh(x)/tgh(x)Гиберболические арксинус и арккосинус
x^2*arcsinh(x)*arccosh(x)Гиберболические арктангенс и арккотангенс
x^2*arctgh(x)*arcctgh(x)Поделитесь своими знаниями, ответьте на вопрос:
Методом интервалов решите неравенство: a) (x^2-1)(x-2)(x+3)меньше или равно 0 б) (x^2-25)(x-2)(x-4) больше или равно 0 в) (x^2-2x-8)(x+5)меньше или равно 0 г) (x^2+2x-15)(x-1)больше или равно 0 д) (x^2 -16)(x^2+2x-8)(x-2)меньше или равно 0 е) (x^2-9)(x^2+x-6)(x+5)больше или равно 0
(x-1)(x+1)(x-2)(x+3)≤0
-3-112
+ - + - +
x∈[-1; 1]∪[1; 2]
б) (x²-25)(x-2)(x-4)≥0
(x-5)(x+5)(x-2)(x-4)≥0
-5245
+ - + - +
x∈(-∞; -5] ∪[2; 4]∪[5; +∞)
в) (x²-2x-8)(x+5)≤ 0
(x²-4x+2x-8)(x+5)≤ 0
(x(x-4)+2(x-4))(x+5)≤ 0
(x+2)(x-4)(x+5)≤0
-5-24
- + - +
x∈(-∞; -5] ∪[2; 4]
г) (x²+2x-15)(x-1)≥ 0
(x²-3x+5x-15)(x-1)≥ 0
(x(x-3)+5(x-3))(x-1)≥ 0
(x-3)(x+5)(x-1)≥0
-513
- + - +
x∈[-5; 1]∪[3; +∞)
д) (x² -16)(x²+2x-8)(x-2)≤ 0
(x-4)(x+4)(x-2)(x+4)≤0
(x-4)(x+4)²(x-2)≤0
-424
+ + - +
x∈[2; 4]
е) (x²-9)(x²+x-6)(x+5)≥ 0
(x-3)(x+3)(x-1)(x+5)(x+5)≥0
(x-3)(x+3)(x-1)(x+5)²≥0
-5-313
- - + - +
x∈[-3; 1]∪[3; +∞)