Чтобы привести многочлен к стандартному виду, нужно:
Привести каждый одночлен многочлена к стандартному виду.
Выполнить приведение подобных одночленов.
Степенью многочлена стандартного вида называют наибольшую из степеней, входящих в его запись.
1) 8ху⁴х³-9х³уу⁷+10zz⁵= 8х¹⁺³у⁴ - 9 х³у¹⁺⁷ +10 z¹⁺⁵= 8x⁴y⁴ -9x³y⁸+10z⁶
найдем степень многочлена :
8x⁴y⁴ : 4+4=8
9x³y⁸: 3+8= 11
10z⁶ : 6
Наибольшая степень 11 - это и будет степенью многочлена
2) 0,2а⁵bb⁶ - 1,1xyx⁷+k⁸t²k= 0,2a⁵b⁷ - 1.1x⁸y +k⁹t²
найдем степень многочлена :
5+7= 12
8+1=9
9+2= 11
Наибольшая степень 12 - это и есть степень многочлена
3)
найдем наибольшую степень :
2+5= 7
8+10=18
16+8=24
Степень многочлена - 24
4)
найдем наибольшую степень :
10+3=13
8+8=16
10
Степень многочлена - 16
33; 34; 35; 36
Объяснение:
На всякий случай напоминаю, что натуральные числа - это числа, которые употребляются при счёте: 1 (самое маленькое число); 2; 3; ...
n - задуманное 1-е число;
(n+1) - 2-е число; (n+2) - 3-е число; (n+3) - 4-е число.
(n+1)²+(n+3)² - сумма квадратов 2-го и 4-го чисел.
n²+(n+2)² - сумма квадратов 1-го и 3-го чисел.
((n+1)²+(n+3)²)-(n²+(n+2)² )=138
(n+1)²+(n+3)²-n²-(n+2)²=138
((n+1)²-n²)+((n+3)²-(n+2)²)=138
Применяем формулу квадрата разности (смотри в учебнике):
(n+1-n)(n+1+n)+(n+3-n-2)(n+3+n+2)=138
1(2n+1)+1(2n+5)=138
4n=138-6
n=132/4
n=33 - 1-е число;
33+1=34 - 2-е число;
33+2=35 - 3-е число;
33+3=36 - 4-е число.
Поделитесь своими знаниями, ответьте на вопрос:
5x-y=17 y=5x-17
-9x+8y=19 -9x+8(5x-17)=19 -9x+40x-136=19 31x=155 x=5 y=5*5-17=8
x=5 y=8