Олегович Паутова
?>

Указание: один угол – 5 частей, другой – 4 части, вместе – 9 частей решить уравнение, найти одну часть и ответить на вопрос луч do делит прямой угол adb на два угла, градусные меры которых относятся как 5: 4.найдите угол между лучом do и биссектрисой угла adb.

Алгебра

Ответы

agaltsova86
Решение смотри в приложении
Указание: один угол – 5 частей, другой – 4 части, вместе – 9 частей решить уравнение, найти одну час
vettime625

1. Сначала вычисляем общее количество возможных вариантов события. Ты можешь взять 1 из любых 41+59=100 карандашей.

А — событие, при котором ты вытягиваешь зелёный карандаш. Вариантов исходов событий — 41.

Тогда P(A)=41/100 = 0,41

2. Общее количество возможных вариантов события расстановки шаров вычисляем как 5!=1×2×3×4×5=120.

B — событие, при котором составляется верная комбинация. Вариантов исходов событий — 1.

Тогда P(B)=1/120

3. Общее число возможных вариантов события вычисляем как 5!/2! = (2!×3×4×5)/2! = 60.

С — событие, при котором число кратно 5. Число кратно 5 тогда, когда оно заканчивается единицей. Число таких событий вычисляем как 4!/2! = (2!×3×4)/2! = 12.

Тогда P(C)=12/60=1/5=0,2.

4. Вероятность того, что попадётся тетрадь в клетку в первой стопке — 2/3. Вероятность того, что попадётся тетрадь в клетку во второй стопке — 2/5.

P(F) — событие, при котором из двух пачек вытягивают тетрадь в клетку. Подсчитаем число исходов, благоприятствующих этому событию (среди 3 тетрадей 1 будет в клетку): 1 тетрадь в клетку можно взять из 4 тетрадей в клетку С при этом остальные 2 тетради должны быть в линейку; взять же 2 тетради в линейку из 6 тетрадей в линейку можно С Следовательно, число благоприятствующих исходов равно С1/4 С2/6:

Р(F)=С1/4*С2/6:С3/10= 20/72=5/18.

5. Общее число возможных вариантов событий равно 36.

D — событие, при котором сумма очков делится на 9. Таких вариантов, благоприятствующих событию, — 4 (3+6; 6+9; 5+4; 4+5).

Тогда P(D)=4/36=1/9.

Насчёт четвёртого я не уверен.

pifpaf85

1) Найди дискриминант квадратного уравнения 8x²+4x+12=0.

D = b² - 4ac = 16 - 4·8·12 = 16 - 384 = -368.

2) Найди корни квадратного уравнения x²+7x+12=0.

По т., обратной к т. Виетта, имеем х₁ = -4; x₂ = -3.

3) Реши квадратное уравнение 2(5x−15)²−7(5x−15)+6=0.

Рациональным будет метод введения новой переменной.

Пусть 5x−15 = t, тогда имеем:

2t²−7t+6=0; D = b² - 4ac = 49 - 4·2·6 = 49 - 48 = 1; √D = 1

t₁ = (7 + 1)/4 = 2; t₂ = (7 - 1)/4 = 1,5.

Возвращаемся к замене:

5x−15 =2; 5x = 2 + 15; 5x = 17; x = 17/5; x₁ = 3,4.

5x−15 = 1,5; 5x = 1,5 + 15; 5x = 16,5; x = 16,5/5; x₂ = 3,3.

ответ: 3,4; 3,3.

4)Найди корни уравнения −8,9(x−2,1)(x−31)=0.

x−2,1 = 0 или x−31 = 0.

х₁ = 2,1            х₂ = 31.

ответ: 2,1; 31.

5) Сократи дробь (x−4)²/(x²+2x−24) = (x−4)²/((x + 6)(x − 4)) = (х - 4)/(х + 6).

Полученная дробь: (х - 4)/(х + 6).

6)Сократи дробь (5x²−32x+12)/(x³−216).

5x²−32x+12 = 0; D = b² - 4ac = 1024 - 480 = 784; √D = 28.

x₁ = (32 + 28)/10 = 6; x₂ = (32 - 28)/10 = 0,4

Имеем: (5x²−32x+12)/(x³−216) = ((x - 6)(5x - 2))/((x - 6)(x² + 6x + 36)) =

= (5x - 2)/(x² + 6x + 36).

7) Разложи на множители квадратный трехчлен  x² + 8x + 15.

x² + 8x + 15 = 0; x₁ = -3; x₂ = -5.

имеем, x² + 8x + 15 = (x + 3)(x + 5).

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Указание: один угол – 5 частей, другой – 4 части, вместе – 9 частей решить уравнение, найти одну часть и ответить на вопрос луч do делит прямой угол adb на два угла, градусные меры которых относятся как 5: 4.найдите угол между лучом do и биссектрисой угла adb.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

lika080489
amayonova
om805633748
mishapavlov9
anton
r682dm2011
Виктор Попова
dimkimka386
prik-galina7390
shkola8gbr
andrew409
Остап-Лаврова1410
nkochladze
ecocheminnov437
pifpaf85