TatyanaVladimirovich
?>

Одно из самых грандиозных сооружений древности-пирамида хеопса, имеет форму правильной 4-х угольной пирамиды, с высотой h= 150м и длиной бокового ребра=220 м. найти объем пирамиды и s боковой поверхности. с чертежом , если можно

Алгебра

Ответы

АнастасияAndrey
Проведем диагональ в квадрате - основании пирамиды.
Высота, половина диагонали и боковое ребро составляют прям-ный тр-ник.
(d/2)^2 = b^2 - H^2 = 220^2 - 150^2 = 48400 - 22500 = 25900
d/2 = √(25900) = 10√259 ~ 161 м.
d = 20√259 ~ 322 м.
Сторона основания а = d/√2 = d√2/2 = 20√259*√2/2 = 10√518 ~ 227,6 м
Площадь основания пирамиды S(осн) = a^2 = 100*518 = 51800 кв.м.
Объем пирамиды V = 1/3*S(осн)*H = 1/3*51800*150 = 2590000 куб.м.
Боковая поверхность - это 4 равнобедренных тр-ника с a = 10√518, b = 220.
Его высота (апофема пирамиды)
h = √(a^2 - (b/2)^2) = √(51800 - 110^2) = √(51800 - 12100) = √(39700) = 10√397
S(бок)=4*S(тр)=4*a*h/2 = 2*10√518*10√397 = 200√(518*397) ~ 90696,42 кв.м.

Одно из самых грандиозных сооружений древности-пирамида хеопса,имеет форму правильной 4-х угольной п
Natakarpova75732

1. Здесь в условии опечатка, скорее всего в точке x₀ = -1.

Прямая y=x-2 касается графика функции y=f(x) в точке x₀ = -1, то эта точка является общей для обеих функций, тогда f(-1) = -1-2=-3


ответ: -3.


2. Производная функции f'(x)=(-2x^2+8x-3)'=-4x+8

f'(0)+f'(-1)=-4\cdot0+8-4\cdot(-1)+8=16


ответ: 16.


3. y'=\dfrac{(x)'\sqrt{x+1}+x(\sqrt{x+1})'}{(\sqrt{x+1})^2}=\dfrac{\sqrt{x+1}+x\cdot\frac{1}{2\sqrt{x+1}}}{x+1}=\dfrac{3x+2}{2(x+1)\sqrt{x+1}}


4. Производная функции: f'(x)=(2x^3-5x)'=6x^2-5

Используем геометрический смысл производной: f'(x₀) = tgα

tg\alpha=f'(2)=6\cdot2^2-5=19


ответ: 19.


5. f'(x)=(x^2-1)'(x^2+1)+(x^2-1)(x^2+1)'=2x(x^2+1)+2x(x^2-1)=\\ \\ =2x^3+2x+2x^3-2x=4x^3


6. f(x)=(1-2x)(2x+1)=(1-2x)(1+2x)=1-4x^2

Производная функции: f'(x)=(1-4x^2)'=-8x. Производная функции в точке 1, равна f'(1)=-8\cdot1=-8


7. Производная функции: f'(x) = 1/2√x, ее значение в точке х=1 равна 1/2. Тогда касательная: y = f'(x0)(x-x0) + f(x0) = 1/2 * (x-1) + 1 = x/2 + 1/2


y(31) = 31/2 + 1/2 = 32/2 = 16


ответ: 16.


8. f'(x)=(x^2)'+(\sqrt{x})'=2x+\dfrac{1}{2\sqrt{x}}

maksim1lssah575

1. Здесь в условии опечатка, скорее всего в точке x₀ = -1.

Прямая y=x-2 касается графика функции y=f(x) в точке x₀ = -1, то эта точка является общей для обеих функций, тогда f(-1) = -1-2=-3


ответ: -3.


2. Производная функции f'(x)=(-2x^2+8x-3)'=-4x+8

f'(0)+f'(-1)=-4\cdot0+8-4\cdot(-1)+8=16


ответ: 16.


3. y'=\dfrac{(x)'\sqrt{x+1}+x(\sqrt{x+1})'}{(\sqrt{x+1})^2}=\dfrac{\sqrt{x+1}+x\cdot\frac{1}{2\sqrt{x+1}}}{x+1}=\dfrac{3x+2}{2(x+1)\sqrt{x+1}}


4. Производная функции: f'(x)=(2x^3-5x)'=6x^2-5

Используем геометрический смысл производной: f'(x₀) = tgα

tg\alpha=f'(2)=6\cdot2^2-5=19


ответ: 19.


5. f'(x)=(x^2-1)'(x^2+1)+(x^2-1)(x^2+1)'=2x(x^2+1)+2x(x^2-1)=\\ \\ =2x^3+2x+2x^3-2x=4x^3


6. f(x)=(1-2x)(2x+1)=(1-2x)(1+2x)=1-4x^2

Производная функции: f'(x)=(1-4x^2)'=-8x. Производная функции в точке 1, равна f'(1)=-8\cdot1=-8


7. Производная функции: f'(x) = 1/2√x, ее значение в точке х=1 равна 1/2. Тогда касательная: y = f'(x0)(x-x0) + f(x0) = 1/2 * (x-1) + 1 = x/2 + 1/2


y(31) = 31/2 + 1/2 = 32/2 = 16


ответ: 16.


8. f'(x)=(x^2)'+(\sqrt{x})'=2x+\dfrac{1}{2\sqrt{x}}

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Одно из самых грандиозных сооружений древности-пирамида хеопса, имеет форму правильной 4-х угольной пирамиды, с высотой h= 150м и длиной бокового ребра=220 м. найти объем пирамиды и s боковой поверхности. с чертежом , если можно
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Викторовна
Delyaginmikhail
Анатольевич1707
jnrhjq3597
Галстян874
Теплова
ivanovanata36937365
av4738046
ievlevasnezhana7
ak74-81
Анатольевич1707
Alyona1692
vallihhh
mahalama7359
vladislavk-market2