Найдите значение параметра к, при котором y1 и y2 касаются.найти координаты точки касания а)y1=x-3 y2=x2+кх+1 б)y1=х+5 y2=-х2+(к-2)х+4 хотя бы одну букву
1) В точке касания значение функций двух линий равны: х² + кх + 1 = х - 3 х² + кх - х + 1 + 3 = 0 х² + (к-1)х + 4 = 0. Чтобы корень полученного квадратного уравнения был один, то дискриминант должен быть равен 0. Д = в² - 4ас = (к - 1)² - 4*1*4 =к² - 2к -15 = 0. Квадратное уравнение, решаем относительно k: Ищем дискриминант:D=(-2)^2-4*1*(-15)=4-4*(-15)=4-(-4*15)=4-(-60)=4+60=64; Дискриминант больше 0, уравнение имеет 2 корня: k_1=(√64-(-2))/(2*1)=(8-(-2))/2=(8+2)/2=10/2=5; k_2=(-√64-(-2))/(2*1)=(-8-(-2))/2=(-8+2)/2=-6/2=-3.
При полученных значениях к парабола у = х² + кх + 1 касается прямой у = х - 3.
Yevsyukov1697
29.01.2020
а) y =∛( (x²-5x +4) /(x-4) ) ; т.к. x²- 5x +4 = x²- x - 4x+4 =x(x-1) - 4(x -1) =(x -1)(x - 4) , то y =∛( (x²-5x +4) /(x-4) ) ОДЗ : x ≠ 4 * * * иначе x ∈ ( -∞ ; 4) ∪ (4 ; ∞) * * * (точка с абсциссой x = 4 будет выколота на графике функции ) y = ∛ (x -1) , x ≠ 4 . --- Пересечение с координатными осями : В точке (0 ; -1) график данной функции пересекается с осью ординат (Oy) В точке (1 ; 0) график данной функции пересекается с осью абсцисс (Ox) Если x → -∞ , y → -∞ Если x → ∞ , y → ∞
б) y = ((x^2-x-6)/(x-3)) ^(1/4) y =( (x-3)(x+2) / x-3) ) ^(1/4) ; y = (x+2) /( x-3) /(x - 3) ^(1/4) ОДЗ : { x+2 ≥ 0 ; x ≠ 3 , т.е. x ∈ [ -2 ; 3) ∪ (3 ; ∞) . точка с абсциссой x = 3 будет выколота на графике функции y = (x+2) ^(1/4) , x ∈ [ -2 ; 3) ∪ (3 ; ∞) . Пересечение с координатными осями : (0 ; 1,2) c осью абсцисс * * * (2) ^(1/4) )≈ 1,2 (-2 ; 0) c осью ординат График расположен в верхней полуплоскости ( у ≥ 0 )
Схематические графики этих функции приведен в прикрепленном файле , Удачи Вам!
druzhbamagazin2457
29.01.2020
||2^x+x-2|-1| > 2^x-x-1 Раскрывать модули будем постепенно, снаружи, как будто снимая листья с кочана капусты))) Помним о важном правиле: |x| =x, если x>=0 |x|=-x, если x<0
Снимаем первый модуль и действуем согласно вышеупомянутому правилу: {|2^x+x-2|-1 >2^x-x-1 {|2^x+x-2|-1> -2^x+x+1 Переносим "-1" из левой части в правую: {|2^x+x-2| > 2^x-x {|2^x+x-2| > -2^x+x+2
2) Снимаем второй модуль и также действуем согласно модульному правилу: {2^x+x-2>2^x-x {2x-2>0 {2^x+x-2>x-2^x {2*2^x-2>0 {2^x+x-2>-2^x+x+2 {2*2^x-4>0 {2^x+x-2>2^x-x-2 {2x>0
{x>1 {x>1 {2^x>1 {x>0 {2^x>2 {x>1 {x>0 {x>0
Решением неравенства является промежуток (1; + беск.)
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найдите значение параметра к, при котором y1 и y2 касаются.найти координаты точки касания а)y1=x-3 y2=x2+кх+1 б)y1=х+5 y2=-х2+(к-2)х+4 хотя бы одну букву
х² + кх + 1 = х - 3
х² + кх - х + 1 + 3 = 0
х² + (к-1)х + 4 = 0.
Чтобы корень полученного квадратного уравнения был один, то дискриминант должен быть равен 0.
Д = в² - 4ас = (к - 1)² - 4*1*4 =к² - 2к -15 = 0.
Квадратное уравнение, решаем относительно k:
Ищем дискриминант:D=(-2)^2-4*1*(-15)=4-4*(-15)=4-(-4*15)=4-(-60)=4+60=64;
Дискриминант больше 0, уравнение имеет 2 корня:
k_1=(√64-(-2))/(2*1)=(8-(-2))/2=(8+2)/2=10/2=5;
k_2=(-√64-(-2))/(2*1)=(-8-(-2))/2=(-8+2)/2=-6/2=-3.
При полученных значениях к парабола у = х² + кх + 1 касается прямой у = х - 3.