ЗАДАЧА 1
1) Проведем высоту BD к стороне D, такую, что АD = 16 и DC = 14
2) Найдем сторону АС. АС = AD + DC = 14+16 = 30
3) Найдем сторону BC. По теореме Пифагора: BC^2 = BD^2 + DC^2 = 8^2 + 14^2 = 64 + 196 = 260. Значит BC = √260
4) Найдем сторону AB. По теореме Пифагора: AB^2 = AD^2 + BD^2 = 16^2 + 8^2 = 256 + 64 = 320. Значит AB = √320
ЗАДАЧА 2
1) Найдем площадь треугольника BCH. (2*7)/2 = 7
2) Проведем высоту DL к стороне AB. Треугольники DLA и BCH равны, следовательно и их площади равны, следовательно сумма их площадей равна 7*2 = 14.
3) Найдем площадь четырехугольника LBHD. (18-7)*2 = 22
4) Найдем площадь всего параллелограмма. 14+22 = 36
ЗАДАЧА 3
1) Проведем высоты BL и CH к основанию AD. Рассмотрим треугольник СDH. ∠СHD = 90° (так как CH - высота) и ∠СDH = 45° (по условию). Значит ∠DCH = 45°. В треугольнике два угла равны, значит он равнобедренный. Значит CH = HD.
2) Найдем BC. BC = AD - 2HD (AL = HD) = 98 - 2*14 = 70
3) Найдем площадь четырехугольника BCHL. 70*14 = 980
4) Найдем площадь треугольника CDH. (14*14)/2 = 98
5) Найдем общую площадь: 980+98*2 = 1176
1) Аналитический.
2) Рекуррентній.
3) Это арифметическая прогрессия с разностью –5. Продолжается так: 6,7; 6,2; 5,7; 5,2; 4,7; 4,2; 3,7; 3,2 ...
4) Первое число кратное трём, это тройка. Поэтому подходят либо второй, либо третий вариант. Четвёртый член должен быть равен 3*4=12, поэтоу правильный ответ — второй: 3; 12; 33.
5)
6)
7) Это арифметическая прогрессия.
8)
ответ: нет, не является, потому что должно быть натуральным числом.
9)
Наибольшее натуральное , удовлетворяющее этому неравенству, — это 16.
ответ: 16 членов.
10)
Второе решение не подходит, поскольку должно быть натуральным числом.
ответ:
Поделитесь своими знаниями, ответьте на вопрос:
Выполните умножение: 1)4·(х+3) 5)6·(a-2b) 2)3·(х+8) 6)( m+3n)·4 3)2·(7-a) 7)2·(3x-2y)·3 4)5·(p-10) 8)3·(2p-5g)·7
2) 3(х+8)= 3х+24
3) 2(7-а)= 14-2а
4) 5(р-10)= 5р-50
5) 6(а-2в)= 6а-12в
6) (m+3n)4=4m+12n
7) 2(3х-2у)3=2(3х-2у)=6х-4у (6х-4у)3=6х*3-4у*3=18х-12у
8) 3(2р-5g)7=6p-15g (6p-15g)7=42p-105g