vsbrelok
?>

6tg x-2ctg x + 11=0 какую замену делать?

Алгебра

Ответы

apetrov13
6tg x-2ctg x + 11=0 tg x = t ctg x= 1/t

 

ЕлизаветаВладимирович
Ах²+4х-2 = 0 d/4 = 4 +2a уравнение имеет корни, если d/4≥0  ⇒ 4+2a≥0;   2a≥-4;   a≥ -2 значит, при а> -2 x₁ = (-2+√4+2a)/a x₂ = (-2- √4+2a)/a при а= -2   √4+2a = 0 ,  ⇒ х=1 при а< - 2   корней нет 2) х²-8х = с² -8с х² - 8х -(с²-8с) = 0 d/4 = 16+(c²-8c) c²-8c+16 ≤ 0 c²-8c+16 = 0 d/4 = 16 -16 = 0 с≤4   при с = 4   уравнение имеет один корень х= 4 при с < 4 уравнение имеет корни  х₁ = 4-√16+(c²-8c)   и х₂ = 4+√16+(c²-8c)  при с> 4 уравнение не имеет корней 3) х² -6а = а²+6х х²-6х-(а²+6а) = 0 d/4 = 9+(а²+6а) 9+(а²+6а)≥0 a²+6a+9  ≥0 d/4 =9-9=0 a= -3 значит уравнение имеет единственный корень при а = -3 х =3
Belokonev286

Дана функция  у = х² – 6х + 5

График, заданный этим уравнением является параболой. Так как  а > 0 (коэффициент при х² положительный), ветви параболы направлены вверх.

Координаты вершины параболы (для построения графика) рассчитываются по формуле:

х₀ = -b/2a  = 6/2 = 3

у₀  = 3² – 6*3 + 5 = -4

Координаты вершины параболы ( 3; - 4)

Для построения графика нужно найти нули функции, точки пересечения параболы оси Х:

х² – 6х + 5 =0

х₁,₂ = (6 ± √36 – 20) / 2

х₁,₂ = (6 ± √16) / 2

х₁,₂ = (6 ± 4) / 2

х₁ = 1

х₂ = 5

Нули функции (1; 0)  (5; 0)

Найти дополнительные точки, чтобы можно было построить график. Придаём значения х, получаем значения у:

х = 0   у = 5                                  (0; 5)

х = -1   у = 12                                 (-1; 12)

х = 2    у = -3                                ( 2; -3)

х = 4   у =  -3                                 (4; -3)

x = 6    y = 5                                 (6; 5)

Координаты вершины (3; -4)

Точки пересечения с осью Х   (1; 0) и (5; 0)

Дополнительные точки:   (0; 5)  (-1; 12)  (2; -3)  (4; -3)  (6; 5)

2. Для выполнения задания нужно правые части уравнений приравнять (левые равны). Если существуют точки пересечения, найдётся значение х:

0,25х²=5х-16

0,25х²-5х+16=0, сократим уравнение на 0,25 для удобства вычислений:

х²-20х+64=0, квадратное уравнение, ищем корни:

х₁,₂ = (20 ± √400–256)/2

х₁,₂ = (20 ± √144)/2

х₁,₂ = (20 ± 12)/2

х₁ = 4

х₂ = 16

Прямая у=5х-16 пересекает параболу у=0,25х² в двух точках.

Нужно найти ординаты (значения у) этих точек. Для этого найденные значения х по очереди подставить в любое уравнение из данных, получим значения у:

у₁=5*4-16=4

у₁=0,25*4²=4           у₁=4

у₂=5*16-16=64

у₂=0,25*16²=64       у₂=64

Координаты точек пересечения (4; 4)   (16; 64)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

6tg x-2ctg x + 11=0 какую замену делать?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Salnikov1730
zu87zu87
Yurevich1243
Georgievich-Zamudinovna2003
pivenraisa
Golovinskii_Sirotkina1944
pedalplanet
Svetlana1884
nata27-73589
ЛАРИСА Насоновская231
cardiodoc08
armusaeff
yusinelnik8
ВасильевнаСергей
MDubovikov73