В общем виде решение линейного неравенства с одной переменной
можно изобразить так:
1) Неизвестные переносим в одну сторону, известные — в другую с противоположными знаками:
2) Если число перед иксом не равно нулю (a-c≠0), обе части неравенства делим на a-c.
Если a-c>0, знак неравенства не изменяется:
Если a-c<0, знак неравенства изменяется на противоположный:
Если a-c=0, то это — частный случай. Частные случаи решения линейных неравенств рассмотрим отдельно.
Примеры.
Это — линейное неравенство. Переносим неизвестные в одну сторону, известные — в другую с противоположными знаками:
Обе части неравенства делим на число, стоящее перед иксом. Так как -2<0, знак неравенства изменяется на противоположный:
Так как неравенство строгое, 10 на числовой прямой отмечаем выколотой точкой. Штриховка от 10 влево, на минус бесконечность.
Так как неравенство строгое и точка выколотая, 10 записываем в ответ с круглой скобкой.
Уравнение прямой, проходящей через точки ( -5,-2) и (-2,0) имеет вид y=kx+b:
Уравнение окружности с центром в точке и радиусом, равным R, имеет вид:
.
Тогда окружность на рисунке имеет вид:
Если перед корнем берём знак (+), то получаем уравнение верхней полуокружности (y≥0) , а если берём знак (-), то получаем уравнение нижней полуокружности (у≤0) .
Уравнение прямых, проходящих параллельно оси ОХ через точку с координатами (a,b) , имеет вид: у=b .
Аналитически заданная на графике функция имеет вид:
Поделитесь своими знаниями, ответьте на вопрос:
Вынесите множитель из под знака корня 1) √18b^2 если b> 0 2) √18b^2 если b< 0
√(9*2)*(-в)²=-3в√2