pronikov90
?>

Решите уравнение x^2=16 если уравнение имеет более одного корня, в ответе укажите меньший из них. решите мне надо

Алгебра

Ответы

levsha-27509
x^{2} =16
x= \sqrt{16}
x=б4

ответ: -4
molchanovaelena284
P(x) делится на Q(x), если существует многочлен R(x) такой, что P(x) = Q(x) * R(x).
Если всё так, то по правилам дифференцирования P'(x) =  Q'(x) R(x) + Q(x) R'(x).

Здесь P(x) = x^4 + ax^3 - bx^2 + 3x - 9, Q(x) = (x + 3)^2.

Рассмотрим эти равенства при x = -3. Поскольку Q(-3) = Q'(-3) = 0 и R(x) и R'(x) - полиномы, то P(-3) = P'(-3) = 0.

P(-3) = 81 - 27a - 9b - 9 - 9 = -9(3a + b - 7) = 0
P'(-3) = -108 + 27a + 6b + 3 = 3(9a + 2b - 35) = 0

9a + 2b = 35
3a + b = 7

Умножаем второе уравнение на 2 и вычитаем его из первого:
3a = 21
a = 7

b = 7 - 3a = -14

P(x) = x^4 + 7x^3 + 14x^2 + 3x - 9 = (x + 3)^2 (x^2 + x - 1)
zabrodin
P(x) делится на Q(x), если существует многочлен R(x) такой, что P(x) = Q(x) * R(x).
Если всё так, то по правилам дифференцирования P'(x) =  Q'(x) R(x) + Q(x) R'(x).

Здесь P(x) = x^4 + ax^3 - bx^2 + 3x - 9, Q(x) = (x + 3)^2.

Рассмотрим эти равенства при x = -3. Поскольку Q(-3) = Q'(-3) = 0 и R(x) и R'(x) - полиномы, то P(-3) = P'(-3) = 0.

P(-3) = 81 - 27a - 9b - 9 - 9 = -9(3a + b - 7) = 0
P'(-3) = -108 + 27a + 6b + 3 = 3(9a + 2b - 35) = 0

9a + 2b = 35
3a + b = 7

Умножаем второе уравнение на 2 и вычитаем его из первого:
3a = 21
a = 7

b = 7 - 3a = -14

P(x) = x^4 + 7x^3 + 14x^2 + 3x - 9 = (x + 3)^2 (x^2 + x - 1)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решите уравнение x^2=16 если уравнение имеет более одного корня, в ответе укажите меньший из них. решите мне надо
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Nikolai710
coleslow12
myatadinamo
nastyakrokhina87
h777eta
apetrov13
annatarabaeva863
petrova-kate3
ambiente-deco516
tatur-642789
Бурмистров_Салагин1074
marketing
master-lamaster
Сергей
ksenia15-79