ajuli2
?>

Является ли число 25 членом арифметической прогрессии -3: 4: 11: если является то укажите номер ответы: а)номер 6 в)не является с)номер 5 д)номер 7 е)номер 8

Алгебра

Ответы

TrofimovAnastasiya828
Номер 5.
Принцип такой: увеличение последующего числа на 7
-3, 4, 11, 18, 25 и т.д.
GridnevaVNIGNI"

1. -2;

2. 3.

Объяснение:

1.Sn=6n-n^2

a1 = S1 = 6•1 - 1^2 = 5;

a1+a2 = S2 = 6•2 - 2^2 = 12 - 4 = 8;

a2 = S2 - S1 = 8 - 5 = 3.

Найдём d:

d = a2 - a3 = 3 - 5 = -2.

2. Sn=6n-n^2

Рассмотрим квадратичную функцию

у = 6х - х^2.

Графиком функции является парабола

у = - х^2 + 6х

Ветви параболы направлены вниз, своего наибольшего значения функция достигает в вершине параболы. Найдём её координаты:

х вершины = -b/(2a) = -6/(-2) = 3.

y вершины = - 3^2 +6•3 = -9+18 = 9.

Наибольшего значения 9 функция у = - х^2 + 6х достигает при х = 3.

Так как 3 - натуральное число, то и наша функция Sn=6n-n^2, определённая только для натуральных n, достигает наибольшего значения 9 при n = 3.

Необходимо взять три первых члена прогрессии, чтобы их сумма была наибольшей и равной 9.

ответить на второй вопрос можно и по-прежнему другому:

Sn=6n-n^2

- n^2 + 6n = - (n^2 - 6n) = - (n^2 -2•n•3 + 9 - 9) = - ((n-3)^2 -9) = - (n-3)^2 + 9.

Так как слагаемое 9 постоянно, a - (n-3)^2 неположительно для любого n, то наибольшей сумма будет тогда, когда наибольшим будет первое слагаемое, т.е. когда - (n-3)^2 = 0, при n = 3.

В этом случае Sn = - (n-3)^2 + 9 = 0 + 9 = 9.

dsnewline
Решим не стандартным

1 ученик - А
2 ученик - Б

Получаем:
А            Б
4             5
5             4
5             5
4             4

В итоге,существует расставить 2 ученикам 2 оценки (4 и 5).

А если прибавить к ним еще одного ученика - С. То:

А          Б          С
4          4           4
5          5           5
4          4           5
4          5           5
5          5           4
5          4           4
4          5           4
5          4           5

В итоге получаем

А что если, оставим тех же 2 учеников, но добавим 1 оценку - 3?

А вот что получим:

А                      Б
3                      3
4                      4
5                      5
3                      4
4                      3
4                      5
5                      4
3                      5
5                      3

В итоге, мы получили

Нет смысла, добавлять 3 ученика. Уже  и так можно увидеть закономерность.

В 1 раз, мы имели 2 ученика и 2 оценки, отметим это как:
(2,2)
В 2 раз, мы имели 3 ученика и 2 оценки, отметим это как:
(2,3)
В 3 раз, мы имели 2 ученика и 3 оценки, отметим это как:
(3,2)

А теперь, выведем формулу:
(a,b)=a^b - где a-число оценок, b-число учеников.

В итоге и получаем:
1 случай:
(2,2)=2^2=4
2 случай:
(2,3)=2^3=8
3 случай:
(3,2)=3^2=9

Теперь, вычислим наш случай в задаче. Есть 24 ученика = b, и 4 оценки=a (2,3,4,5).
Отсюда:
(a,b)=(4,24)=4^{24}=281474976710656

Второй

Для первого ученика существует 4 варианта:
2,3,4,5 
Для второго ученика существует 4 варианта на каждый вариант первого ученика.
То есть:
\dispaystyle 4\cdot 4=16 - варианта событий.

Для третьего ученика существует 4 варианта на каждый вариант второго ученика.
То есть:
16\cdot 4=64 - варианта событий.

И так далее. В итоге получаем, что для 24 учеников существует ровно:

4^{24}=281474976710656 - вариантов событий.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Является ли число 25 членом арифметической прогрессии -3: 4: 11: если является то укажите номер ответы: а)номер 6 в)не является с)номер 5 д)номер 7 е)номер 8
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Демидова Красноцветов
nickcook424
euzdenova
Anatolevich-sergeevna
Designer
AlekseiMardanova
tyrnaus
Gatina
Николаевна1564
jenek-f
elenarumack
gk230650
is0019
Геннадьевна_Петр
VladimirovnaKashintsev1151