1) Сумма бесконечной убывающей геометрической прогрессии S = b1/(1 - q) У нас b1 = 8, q = 0,5, S = 8/(1 - 0,5) = 16 2) Арифметическая прогрессия a(n) = a1 + d*(n - 1) У нас a1 = 3, d = 4, n = 10, a(10) = 3 + 4*9 = 3 + 36 = 39 3) b1 = 9, q = -1/3, S = 9/(1 - 1/3) = 9/(2/3) = 9*3/2 = 13,5 4) Сумма арифметической прогрессии S = (a1 + a(n))*n/2 a1 = 2, n = 102-2+1 = 101, a(101) = 102 S = (2 + 102)*101/2 = 52*101 = 5252 5) a1 = -3, d = -3, n = 25, a(25) = -3 - 3*24 = -3 - 72 = -75 6) a1 = 10, d = -2, n = 10, a(10) = 10 - 2*9 = 10 - 18 = -8 S(10) = (10 - 8)*10/2 = 2*10/2 = 10
larinafashion829
14.07.2020
Пусть х литров молока в первом бидоне, а у литров - во втором. х+у=75 литров молока. Если из первого вылить 1/5 часть молока останется х-1/5x=5x/5-x/5=4/5x=0,8х литров, а во второй долить 2 литра, получим у+2 литров молока, что в полтора раза больше, чем в первом: у+2=1,5*0,8х=1,2х Составим и решим систему уравнений: х+у=75 у+2=1,2х
Выразим значение у в первом уравнении: у=75-х
Подставим его во второе уравнение (метод подстановки): у+2=1,2х 75-х+2=1,2х 77-х-1,2х=0 -2,2х=-77 2,2х=77 х=77:2,2 х=35 (литров молока) - в первом бидоне Тогда во втором у=75-х=75-35=40 литров. ответ: в первом бидоне было 35 литров молока, а во втором 70 литров молока.