1.√(7-3x)>5 ОДЗ: 7-3х≥0 Возводим обе части неравенства в квадрат: 7-3х> 25; Система: 7-3х≥0; 7-3х >25 равносильна неравенству 7-3х>25; -3x> 25-7; -3x > 18; x< -6. ответ. (-∞;-6). 2. √(2x+1)>-3 неравенство верно при любом х из ОДЗ. ОДЗ: 2х+1 ≥ 0 х ≥ -0,5 О т в е т. [-0,5;+∞) 3. √(3+2x)>=√(x+1) ОДЗ: 3+2х≥0 ⇒ x ≥ -1,5 х+1≥0 ⇒ x ≥-1 ОДЗ: х≥-1 Возводим неравенство в квадрат. 3+2х ≥ х+1; х ≥ -2 ответ с учетом ОДЗ х≥ -1 О т в е т. [-1;+∞)
4. √(8-2x)=<√(6x+15) ОДЗ: 8-2х ≥0 ⇒ х ≤ 4 6х+15≥0 ⇒ х≥-2,5 ОДЗ: - 2,5 ≤ х ≤ 4. Возводим неравенство в квадрат: 8 - 2х ≤ 6х + 15; -2х - 6х ≤ 15 - 8 - 8х ≤ 7 х ≥ -7/8 С учетом ОДЗ: О т в е т. [-7/8;4]
purbuevat56524
03.12.2022
Функция an=f (n) натурального аргумента n (n=1; 2; 3; 4;...) называется числовой последовательностью.
Числа a1; a2; a3; a4;…, образующие последовательность, называются членами числовой последовательности. Так a1=f (1); a2=f (2); a3=f (3); a4=f (4);…
Итак, члены последовательности обозначаются буквами с указанием индексов — порядковых номеров их членов: a1; a2; a3; a4;…, следовательно, a1 — первый член последовательности;
a2 - второй член последовательности;
a3 - третий член последовательности;
a4 - четвертый член последовательности и т.д.
Кратко числовую последовательность записывают так: an=f (n) или {an}.
Существуют следующие задания числовой последовательности:
1) Словесный Представляет собой закономерность или правило расположения членов последовательности, описанный словами.
Пример 1. Написать последовательность всех неотрицательных чисел, кратных числу 5.
Решение. Так как на 5 делятся все числа, оканчивающиеся на 0 или на 5, то последовательность запишется так:
0; 5; 10; 15; 20; 25; ...
Пример 2. Дана последовательность: 1; 4; 9; 16; 25; 36; ... . Задайте ее словесным
Решение. Замечаем, что 1=12; 4=22; 9=32; 16=42; 25=52; 36=62; … Делаем вывод: дана последовательность, состоящая из квадратов чисел натурального ряда.
2) Аналитический Последовательность задается формулой n-го члена: an=f (n). По этой формуле можно найти любой член последовательности.
Пример 3. Известно выражение k-го члена числовой последовательности: ak = 3+2·(k+1). Вычислите первые четыре члена этой последовательности.
Решение.
a1=3+2∙(1+1)=3+4=7;
a2=3+2∙(2+1)=3+6=9;
a3=3+2∙(3+1)=3+8=11;
a4=3+2∙(4+1)=3+10=13.
Пример 4. Определите правило составления числовой последовательности по нескольким ее первым членам и выразите более простой формулой общий член последовательности: 1; 3; 5; 7; 9; ... .
Решение. Замечаем, что дана последовательность нечетных чисел. Любое нечетное число можно записать в виде: 2k-1, где k — натуральное число, т.е. k=1; 2; 3; 4; ... . ответ: ak=2k-1.
3) Рекуррентный Последовательность также задается формулой, но не формулой общего члена, зависящей только от номера члена. Задается формула, по которой каждый следующий член находят через предыдущие члены. В случае рекуррентного задания функции всегда дополнительно задается один или несколько первых членов последовательности.
Пример 5. Выписать первые четыре члена последовательности {an},
если a1=7; an+1 = 5+an.
Решение.
a2 =5+a1=5+7=12;
a3 =5+a2=5+12=17;
a4 =5+a3=5+17=22. ответ: 7; 12; 17; 22; ... .
Пример 6. Выписать первые пять членов последовательности {bn},
Рассмотренная числовая последовательность в качестве функции (в примере 7) задана на множестве первых пяти натуральных чисел (n=1; 2; 3; 4; 5), поэтому, является конечной числовой последовательностью (состоит из пяти членов).
Если числовая последовательность в качестве функции будет задана на всем множестве натуральных чисел, то такая последовательность будет бесконечной числовой последовательностью.
Числовую последовательность называют возрастающей, если ее члены возрастают (an+1>an) и убывающей, если ее члены убывают (an+1 Возрастающая или убывающая числовые последовательности называются монотонными.