Петренко1852
?>

30 и лучший ответ у натурального числа n ровно 3 различных простых делителя, у числа 31 n таких делителей тоже 3, а у числа 462 –– семь. чему равна сумма цифр наименьшего такого числа n.

Алгебра

Ответы

patersimon1
У числа n три разных простых делителя. У числа 31n тоже три делителя.
Значит, один из делителей числа n равен 31. n = 31*k1*k2.
У числа 462n = 2*3*7*11*n = 2*3*7*11*31*k1*k2 - 7 делителей.
Значит, k1 и k2 не равны ни 2, ни 3, ни 7, ни 11.
Значит, наименьшие значения k1 = 5, k2 = 13.
Наименьшее n = 5*13*31 = 2015, его сумма цифр равна 8.
Малыхин Валерьевна621

Объяснение:

1) 2х + 1 = 3х - 4

Перенесём известные слагаемые в одну сторону, неизвестные в другую:

2x-3x = -4-1

-x=-5

Делим обе части на множитель при переменной x (-1)

x=5

ответ: 5.

2) 1,6(5х – 1) = 1,8х – 4,7

Раскроем скобки:

8x-1,6=1,8х-4,7

Перенесём известные слагаемые в одну сторону, неизвестные в другую:

8х-1,8х=-4,7+1,6

6,2х=-3,1

Делим обе части на множитель при переменной x (6,2)

х=-0,5

ответ: -0,5.

3) - 2х + 1 = - х - 6

Перенесём известные слагаемые в одну сторону, неизвестные в другую:

-2х+х=-6-1

-х=-7

Делим обе части на множитель при переменной x (-1)

х=7

ответ: 7.

-

gon4arovanat6
Решение
log₂ sin(x/2) < - 1
ОДЗ: sinx/2 > 0
2πn < x/2 < π + 2πn, n ∈ Z
4πn < x < 2π + 4πn, n ∈ Z
sin(x/2) < 2⁻¹
sin(x/2) < 1/2
- π - arcsin(1/2) + 2πn < x/2 < arcsin(1/2) + 2πn, n ∈ Z
- π - π/6 + 2πn < x/2 < π/6 + 2πn, n ∈ Z
- 7π/6 + 2πn < x/2 < π/6 + 2πn, n ∈ Z
- 7π/3 + 4πn < x < π/3 + 4πn, n ∈ Z
2)  log₁/₂ cos2x > 1
ОДЗ:
cos2x > 0
- arccos0 + 2πn < 2x < arccos0 + 2πn, n ∈ Z
- π/2 + 2πn < 2x < π/2 + 2πn, n ∈ Z
- π + 4πn < x < π + 4πn, n ∈ Z
так как 0 < 1/2 < 1, то
cos2x < 1/2
arccos(1/2) + 2πn < 2x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < 2x < 2π - π/3 + 2πn, n ∈ Z
π/6 + πn < x < 5π/6 + πn, n ∈ Z

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

30 и лучший ответ у натурального числа n ровно 3 различных простых делителя, у числа 31 n таких делителей тоже 3, а у числа 462 –– семь. чему равна сумма цифр наименьшего такого числа n.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Yumashev
Марина_Мария
Olga-Lev1160
vinokurova88251
Gaziev1636
Станислав Роман994
Функциягын графикин салыстыру ​
MislitskiiSergei1403
zu87zu87
vikgor45
Vera_Shuklin
Светлана308
Fedorov1283
vifslafes
Romanovich1658
vera2job7