2 1/2*(2/15 - 3 5/6)-2 3/4= - 12
1) 2/15 - 3 5/6=4/30 - 3 25/30= -3 21/30 2) 2 1/2 *(- 3 21/30)= - 5/2 * 111/30= - 111/12= - 9 3/12= - 9 1/4
3) - 9 1/4 - 2 3/4= - 11 4/4= - 12
1 1/7*(4/5+19/20)6 5/6+4 2/3)= - 23
1) 4/5+19/20=16/20+19/20=35/20=1 15/20=1 3/4
2) 6 5/6+4 2/3=6 5/6+4 4/6=10 9/6=11 3/6=11 1/2
3) - 1 1/7 *1 3/4 = - 8/7* 7/4= - 2 4) - 2* 11 1/2= - 2* 23/2= - 23
(6 3/8 -2 3/4)(-4)+7/18 * 9= - 11 1) 6 3/8 -2 3/4=6 3/8 -2 6/8=3 5/8 2) З 5/8 * (-4)= - 29/8 * 4= - 29/2= - 14 1/2
3) 7/18*9=7/2=3 1/2 4) 14 1/2+3 1/2= - 11
9 1/6 :(4 1/3 - 8)+24 * 3/8=6 1/2 1) 4 1/3-8= -3 2/3
2) 9 1/6:(-3 2/3)= - 55/6:11/3= - 55/6* 3/11= - 5/2= - 2 1/2
3) 24 * 3/8=9 4) - 2 1/2+9=6 1/2
Найдем значение выражения 9 1/6 : (4 1/3 - 8) + 24 * 3/8.
Сначала в порядке очереди находим значение выражения в скобках, затем вычисляем умножение или деление, потом проводятся действия сложения или вычитания. То есть получаем:
9 1/6 : (4 1/3 - 8) + 24 * 3/8 = (9 * 6 + 1)/6 : (4 + 1/3 - 8) + 24 * 3/8 = (54 + 1)/6 : (- 4 + 1/3) + 24 * 3/8 = 55/6 : (- 3 - 3/3 + 1/3) + 3 * 8 * 3/8 = 55/6 : (- 3 - 2/3) + 3 * 1 * 3/1 = 55/6 : (- 11/3) + 3 * 3 = - 55/6 : 11/3 + 3 * 3 = - 55/6 * 3/11 + 3 * 3 = - 11 * 5/(2 * 3) * 3/11 + 9 = 5/2 + 9 = 2,5 + 9 = 11,5;
ответ: 11,5.
Поделитесь своими знаниями, ответьте на вопрос:
Кканоническому виду кривую второго порядка, определить её тип, указать основные харатеристики: (-x^2)+4x+(y^2)-6y+4=0
Гипербола. a = (мнимая полуось); b = (действительная полуось); O(2;3).