1.
p=34cm
a=x
b=x-3
Длина 10, Ширина 10-3=7
2)
Известно, что туристическую группу из 38 человек расселили в двухместные и трёхместные номера.
При этом всего было занято 14 номеров.
Требуется вычислить сколько среди них было двухместных и сколько трёхместных.
Обозначим количество двухместных номеров "х", а количество трёхместных "у".
Тогда:
х + у = 14
х = 14 - у.
Составим уравнение.
2х + 3у = 38,
Подставим значение "х".
2 * (14 - у) + 3у = 38,
28 - 2у + 3у = 38,
у = 38 - 28 = 10 трёхместных номеров.
14 - 10 = 4 двухместных номеров.
Воспользуемся формулой n-го члена арифметической прогрессии аn = a1 + (n - 1) * d, где а1 - первый член арифметической прогрессии, d - разность арифметической прогрессии.
Согласно условию задачи, дана арифметическая прогрессия (an) для которой: a10 = -2.4, a25 = -0.9, следовательно, можем записать следующие соотношения:
a1 + (10 - 1) * d = -2.4;
a1 + (25 - 1) * d = -0.9.
Решаем полученную систему уравнений. Вычитая первое уравнение из второго, получаем:
a1 + 24 * d - а1 - 9 * d = -0.9 - (-2.4);
15 * d = 2.4 - 0.9;
15 * d = 1.5;
d = 1.5 / 15;
d = 0.1.
ответ: разность данной прогрессии равна 0.1.
Поделитесь своими знаниями, ответьте на вопрос:
Решить графическую систему уравнений {x-3y=8 {2x-3y=10
х=8+3у 2(8+3у)-3у=10 16+6у-3у=10 16+3у=10 3у=10-16 3у=-6 у=-2 х=8+3*(-2) х=2