Вероятность попадания в мишень одного стрелка при одном выстреле для первого стрелка равна 0.8, для второго стрелка – 0.85. Стрелки произвели по одному выстрелу в мишень. Считая попадание в цель для отдельных стрелков событиями независимыми, найти вероятность события А – ровно одно попадание в цель.
Решение.
Рассмотрим событие A - одно попадание в цель. Возможные варианты наступления этого события следующие:
Попал первый стрелок, второй стрелок промахнулся: P(A/H1)=p1*(1-p2)=0.8*(1-0.85)=0.12
Первый стрелок промахнулся, второй стрелок попал в мишень: P(A/H2)=(1-p1)*p2=(1-0.8)*0.85=0.17
Первый и второй стрелки независимо друг от друга попали в мишень: P(A/H1H2)=p1*p2=0.8*0.85=0.68
Тогда вероятность события А – ровно одно попадание в цель, будет равна: P(A) = 0.12+0.17+0.68 = 0.97
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Решите уравнение (sin3x)/(sin2x) - (cos3x/cos2x)=(2)/(cos3x)
(Sin3xCos2x - Cos3xSin2x) / Sim2xCos 2x
уравнение примет вид:
Sinx /Sin2xCos2x = 2/Cos3x
SinxCos3x = 2Sin2xCos2x
1/2*2SinxCos3x = Sin4x
1/2(Sin4x -Sin2x) = Sin4x
1/2Sin4x -1/2Sin2x -Sin4x = 0
-1/2Sin4x -1/2 Sin2x = 0
Sin4x +Sin2x = 0
2Sin3xCosx = 0
a) Sin3x = 0 б) Cos x = 0
3x = πn, nЄ Z x = π/2 + πk,kЄ Z
x = π/3 + πn/3, nЄ Z