1) a) 4+12x+9x2
4+12x+18
22+12x
2(11+6x)
б) 25-40х+16х2
25-40х+32
57-40х
г) -56а+49а*2+16
-56а+98а+16
42а+16
2(21а+8)
2) a) (y-1)(y+1) б) p^2-9 г) (3x-2)(3x+2) д) (3x)^2-2^2 е) a^2-3^2
y^2-1 (3x)^2-2^2 9x^2-4 a^2-9
в) 4^2-(5y^2) 9x^2-4
16-25y^2
4) a) a3-b3 б) 27a3+8b3
3(a-b) 81a+24b
3(27a+8b)
Объяснение:мы умеем сравнивать дроби с одинаковыми знаменателями и одинаковыми числителями, числители у нас разные, но приводить к общему знаменателю мы умеем.
сравним
2/9 и 5/12, общий знаменатель 36,
2*4/(9*4) и 5*3/(12*3)
8 <15 значит 2/9 < 5/12
сравним
5/12 и 4/15, общий знаменатель 60
5*5/(12*5) и 4*4/(15*4)
25>16
значит 5/12 > 4/15
теперь мы знаем что 5/12 самое большое. надо сравить
2/9 и 4/15 общий знаменатель 45
2*5/(9*5) и 4*3/(15*3)
10 <12
значит 2/9 < 4/15
итого самая маленькая это 2/9 потом 4/15 и 5/12
Другой вариант решения привести все три дроби к одному общему знаменателю.
9=3^2 12=3*2*2 15=3*5, НОК= 2*2*3*3*5=180
2/9=2*20/(9*20)=40/180
5/12=5*15/(12*15)=75/180
4/15=4*12/(15*12)=48/180
в таком виде сравнить дроби просто.
2/9<4/15<5/12
3/8, 5/18 и 10/21
можно применить второй , но тут цифры будут неприятные, так что давайте всё-таки попарно
3/8 5/18
3*9/(8*9) 5*4/(18*4)
27/72 > 20/72
3/8 и 10/21
3*21/(8*21) 10*8/(21*8)
63/168 < 80/168
мы получили что 3/8 меньше 10/21 и больше 5/18, значит последнюю пару сравнивать не нужно можно сразу писать ответ
самое большое это 10/21 потом 3/8 и 5/18
Поделитесь своими знаниями, ответьте на вопрос:
Нужна ! определите знаки выражения: 1) sin300° * cos200°; 2) sin193° * tg202°; 3) cos40° * sin120° * tg150°; 4) tg97° *ctg197° * cos297°. заранее, большое !
1) синус в четвертой четверти отрицателен, а косинус в третьей четверти - отрицателен, т.е. sin 300° < 0, cos 200° < 0. Следовательно,
sin 300° * cos 200° > 0
2) Аналогично, sin 193° < 0, tg202°>0, значит sin193°tg202° < 0
3) cos40° > 0; sin120° > 0; tg150° < 0, значит cos40°sin120°tg150° < 0
4) tg 97° < 0; ctg197° > 0; cos297° > 0, тогда tg97°ctg197°cos297° < 0
ответ: 1) + ; 2) - ; 3) - ; 4) - .