Чисел, которые одновременно делятся и на 3 и на 5 всего 6: 15;30;45;60;75 и 90
m=30+20-6=44
p=44/90=22/45
elenak26038778
14.01.2022
Пусть исходное число было abcd, тогда записанное в обратном порядке число dcba. По разности 909 можно заметить, что такое возможно, только, если a>d. Распишем по разрядным слагаемым:
abcd=1000a+100b+10c+d
dcba=1000d+100c+10b+a
По условию:
abcd-dcba=909
1000a+100b+10c+d-1000d-100c-10b-a=909
999a-999d+90b-90c=909
999(a-d)+90(b-c)=909
111(a-d)-10(c-b)=101
Поскольку a>d, то единственный возможный вариант - это a-d=1, при (a-d)>1, например 2: 222-10(с-b)>101, а значит:
111-10(c-b)=101
10(c-b)=10
c-b=1 ⇒
a=d+1, из чего видно, что d≤8
c=b+1, из чего видно, что b≤8
Есть еще условие, что сумма цифр кратна 3.
a+b+c+d=2d+1+2b+1=2(d+b+1) ⇒ поскольку сумма цифр четная, то остается единственный вариант: 2(d+b)+2=6n максимально возможное 30d+b=14 Подбираем максимальное: а=9 d=8 b=14-8=6 c=7 9678-8769=909
ответ 9678
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Докажите, что для любого альфа справедливы равенства sin(p-a)=sin a p - число пи a - альфа
sin(π - α) = sinα
упростим левую часть тождества
sin(π - α) = sinπ*cosα - cosπ*sinα = - (-1)*sinα = sinα
sinα = sinα
доказано