1. Всего карточек 50 из них 9; 18; 27; 36; 45 кратны 9 - их всего 5 карточек.
Всего все возможных событий: n=50
Всего благоприятных событий: m = 5
Искомая вероятность: P = m/n = 5/50 = 1/10 = 0,1.
2. Всего все возможных подбрасывания игральных кубиков: 6*6=36
На желтой кости выпало четное число: {2;4;6}
На красной кости - {5}
Всего благоприятных событий: 3*1 = 3.
Искомая вероятность: P = 3/36 = 1/12
3. Вероятность того, что вынутая наугад карта окажется шестеркой красной масти равна . Тогда вероятность того, что вынутая наугад карта окажется не шестеркой красной масти равна
4. Выпишем все выпадения очков, в сумме не меньше 11.
{6;6}, {5;6}, {6;5} - всего 3
Искомая вероятность: P = 3/36 = 1/12
5. Всего все возможных событий:
Один красный шар можно достать а один белый По правилу произведения, достать один красный и один белый шары можно
Искомая вероятность: P = 12/21 = 4/7
x = 3i или x = 3 + 2i
Объяснение:
Все формулы для вещественного случая работают и тут.
Дискриминант:
Дальше нужно будет извлечь корень из дискриминанта. В данном случае он легко угадывается, но пусть мы его не угадали; поищем такие вещественные a и b, что . Раскрываем скобки и получаем
Возводим второе уравнение в квадрат, получаем, что сумма и равна 8, их произведение – -9. По теореме, обратной к теореме Виета, и – корни уравнения , очевидно, , . Подстановкой убеждаемся, что равно .
Продолжаем применять формулы:
Это и есть ответ.
Поделитесь своими знаниями, ответьте на вопрос:
Найдите p(a)=p1(a)+p2(a), если: p1(a)=2a+5; p2(a)=3a-7
ну и все...