Liliya_Ivanova
?>

Уравнение 2sin^2x+sinx=0 и 6sin^2x-2sin2x=1

Алгебра

Ответы

arch5050
1)

2sinx+sinx=0

sinx(2sinx+1)=0

sinx=0=x= \pi n  (Тут по середине где стоит = значит это ⇒)

sinx=- \frac{1}{2} =x=(-1)^n* \frac{ \pi }{6} + \pi n Тут по
середине где стоит = значит это ⇒)


2)

6sin^2-2sin 2x=1

6sin^2x-4sinxcosx-sin^2x-cos^2x= \frac{0}{cos^2x}

5tg^2x-4tgx-1=0

tgx=a (Поставим а)

5a^2-4a-1=0

D=16+20=36

a_{1} = \frac{(4-6)}{10} =-0,2=tgx=-0,2=x=-arctg0,2+ \pi n,nz (Тут
пере Z стоит ∈)

a_{2} = \frac{(4+6)}{10} =1=tgx=1=x= \frac{ \pi }{4} + \pi k,kz (Тут пере Z стоит ∈)
 
КристинаАлександр
Для начала определим точку пересечения прямых. Для этого приравняем оба уравнения:

-7/8х + 17 = -3/5 х - 16
-7/8х + 3/5х = -16 - 17
7/8х - 3/5х = 16+17
11/40 х = 33
х = 33 : 11/40 = 33 * 40/11
х = 120
Чтобы найти у подставляем х в любое из этих уравнений. Я выбрала второе.
у = - 3/5 * 120 - 16 = -72-16 = -88
Точка пересечения: (120; -88)
Если график уравнения проходит через эту точку, то подставив ее координаты мы должны получить верное выражение:
у+рх =0
-88+120р=0
120р = -88
р = -88/120
р = -11/15
ответ: -11/15
uchpapt
Первая парабола У=-Х²+4 имеет вершину на оси У (при Х=0 У=4) и ветви ее направлены вниз, т.к. перед Х² минус. Она симметрична оси У.

Вторая парабола У=(Х-2)² имеет вершину на оси Х (при Х=2 У=0) и ветви ее направлены вверх. Ее ось симметрии - прямая Х=2.

Чертим оси координат, отмечаем 0, точки с координатами (0;4) и (2;0), показываем ось симметрии Х=2.

Потом по клеточкам рисуем эти параболы (буквально по 2 пары точек)  и видим, что пересечение двух парабол - именно в точках  с координатами (0;4) и (2;0). 

Общие точки на 2 параболах - при Х=0 и Х=2. Это и есть корни уравнения.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Уравнение 2sin^2x+sinx=0 и 6sin^2x-2sin2x=1
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

alvs9
Людмила902
kristina
izumrud153
motor2218
vfilina
Mbkozlov6
smakarov76
fedoseevgleb
LidiyaBorzikh
aifbon
Shteinbakh
Stryapunina
happygal5224
Тариелович871