saljagindima
?>

Решите уравнение по теме комбинаторика (факториал):

Алгебра

Ответы

Анатольевна824
ответ: n=8. Решение в приложении.
Решите уравнение по теме комбинаторика (факториал):
nikziam

Замечаем, что перестановки происходят отдельно среди четных чисел и среди нечетных чисел.  Поэтому надо ответить на следующий вопрос: есть k предметов, расставленных в каком-то порядке слева-направо и соответствующим образом занумерованных; меняя местами за одну операцию два соседних предмета, нужно расставить их в том же порядке, но справа-налево. Говоря ученым языком, можно сказать, что сначала у нас не было ни одной инверсии (инверсия - это когда предмет с меньшим номером стоит правее предмета с большим номером), а надо сделать максимальное количество инверсий. Меняя местами соседей, мы каждый раз изменяем количество инверсий на 1. Конечно, нам невыгодно уменьшать количество инверсий, а выгодно - увеличивать. Но в каком порядке производить эту операцию - менять местами соседей - абсолютно непринципиально. Поступим, скажем, так. Поменяем сначала местами первый предмет и второй, затем первый и третий, первый и четвертый, и так далее, наконец, первый и последний. Всё. Первый предмет оказался на нужном месте и больше оттуда никуда сдвигаться не будет. Потребовалось нам для этого, естественно, (k-1) операция. Далее будем передвигать второй предмет до тех пор, пока он не поменяется местами с k-м предметом и  не окажется рядом с первым, но левее первого. На это потребуется (k-2) операции. И так далее. Всего мы насчитаем (k-1)+(k-2)+\ldots +2+1=\frac{(k-1)k}{2} операций.

Остается подвести итоги. Окончательный ответ зависит от того, каково n - четное оно или нечетное.

1-й случай: n - четное, n=2m. Это означает, что у нас m четных чисел и m нечетных чисел. Всего операций получится

\frac{(m-1)m}{2}+\frac{(m-1)m}{2}=(m-1)m=(\frac{n}{2}-1)\frac{n}{2}=\frac{(n-2)n}{4}

2-й случай. n - нечетное, n=2m+1. Это означает, что у нас m четных чисел и (m+1) нечетных чисел.Всего операций получится

\frac{(m-1)m}{2}+\frac{m(m+1)}{2}=m^2=\left(\frac{n-1}{2}\right)^2

Решим задачу для n=5, 6, 7, 23.

n=5 - нечетное; \left(\frac{5-1}{2}\right)^2=4

n=6 - четное; \frac{(6-2)\cdot 6}{4}=6

n=7 - нечетное; \left(\frac{7-1}{2}\right)^2=9

n=23 - нечетное; \left(\frac{23-1}{2}\right)^2=121  

sv-opt0076
1) (а-в)²=(в-а)²
Чтобы доказать тождество, нужно с тождественных преобразований:

либо правую часть привести к виду левой части;
либо левую часть привести к виду правой части ;
либо и левую и правую привести к какому другому одинаковому виду

Преобразуем левую часть:
(a - b)² = a² - 2ab + b²
Преобразуем правую часть:
(b-a)²=b² -2ba+a²

Так как аb=ba, то a²-2ab+b²=b²-2ba+a²
Значит
(a-b)²=(b-a)²

2) Выполняем тождественные преобразования левой части и приведем ее к виду правой части
(-a-b)²=(-a)²+2·(-a)·(-b)+(-b)²=a²+2ab+b²=(a+b)²

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решите уравнение по теме комбинаторика (факториал):
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

bb495
olesya-cat8601
mvv-155
Валентина980
Глазкова633
e3913269
elozinskaya
milleniumwood633
Galinova2911
snabomp
moskvichkabakery56
mukbidc
koeman
oyunabaduraeva
zabrodin