||2^x+x-2|-1| > 2^x-x-1 Раскрывать модули будем постепенно, снаружи, как будто снимая листья с кочана капусты))) Помним о важном правиле: |x| =x, если x>=0 |x|=-x, если x<0
Снимаем первый модуль и действуем согласно вышеупомянутому правилу: {|2^x+x-2|-1 >2^x-x-1 {|2^x+x-2|-1> -2^x+x+1 Переносим "-1" из левой части в правую: {|2^x+x-2| > 2^x-x {|2^x+x-2| > -2^x+x+2
2) Снимаем второй модуль и также действуем согласно модульному правилу: {2^x+x-2>2^x-x {2x-2>0 {2^x+x-2>x-2^x {2*2^x-2>0 {2^x+x-2>-2^x+x+2 {2*2^x-4>0 {2^x+x-2>2^x-x-2 {2x>0
{x>1 {x>1 {2^x>1 {x>0 {2^x>2 {x>1 {x>0 {x>0
Решением неравенства является промежуток (1; + беск.)
Энверович
13.04.2021
Пусть в период военных учений было создано n командных пунктов. Тогда у 1-го пункта было (n-1) линий связи, у 2-го - (n-2), у 3-го - (n-3),.....у (n-1)-го было (n-(n-1))=1 линия связи Всего (n-1)+(n-2)+(n-3)+...=120 Получити арифметическую прогрессию, где первый член (n-1), разность -1, число членов (n-1) . По формуле S=(2a₁+d)n/2 найдем сумму (2(n-1)-(n-1))n/2=120 Умножим обе части уравнения на 2, перенесем все в одну сторону D=961, n=16 или n=-15 - не удовлетворяет условию задачи ответ: 16
Sergeevich-Novikov
13.04.2021
1) Если ордината противоположна абсциссе, то это значит, что у=-х. Координаты заданной точки: (3; -3).
2) Точка A(a;3), если a>0 расположена в 1 четверти ( или координатном угле ), где находятся положительные значения и х и у.
3) Точка В: х = -2 + 5 = 3, у = 3 (как у точки А). Точка С: х = 3, у = 3 - 5 = -2. Точка Д: х = -2 (как у точки А), у = -2 (как у точки С).
4) Координаты точки M - середины отрезка AB, если A(5;3) и B(−7;−2): М((5+(-7))/2=-1; (3+(-2))/2=0,5) М(-1; 0,5).
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
||2^x+x-2|-1|> 2^x-x-1 , как это решать? ! кто как может!
Раскрывать модули будем постепенно, снаружи, как будто снимая листья с кочана капусты)))
Помним о важном правиле:
|x| =x, если x>=0
|x|=-x, если x<0
Снимаем первый модуль и действуем согласно вышеупомянутому правилу:
{|2^x+x-2|-1 >2^x-x-1
{|2^x+x-2|-1> -2^x+x+1
Переносим "-1" из левой части в правую:
{|2^x+x-2| > 2^x-x
{|2^x+x-2| > -2^x+x+2
2) Снимаем второй модуль и также действуем согласно модульному правилу:
{2^x+x-2>2^x-x {2x-2>0
{2^x+x-2>x-2^x {2*2^x-2>0
{2^x+x-2>-2^x+x+2 {2*2^x-4>0
{2^x+x-2>2^x-x-2 {2x>0
{x>1 {x>1
{2^x>1 {x>0
{2^x>2 {x>1
{x>0 {x>0
Решением неравенства является промежуток (1; + беск.)