(-6, -5 )
Объяснение:
P.S забыла скобку фигурную слева, там где x = -2y-16, -5y=25
Если коротко объяснить решения, то это метод подстановки. Выражаем одну переменную через другую и подставляем ее в другое уравнение. Ещё можно решать через графический метод, но это достаточно долго, можно было привести через метод алгебраического сложения:
{x+2y=-16,
{2x-y=-7; | Будем действовать через игрек. Умножаем уравнение на 2.
{x+2y=-16,
{4x-2y=-14;
Теперь там где фигурная скобка ( она должна быть большой, захватывать два уравнения ), мы ставим знак + и складываем уравнения.
{x+2y=-16,
{4x-2y=-14;
_________
(x+4x)+(2y+(-2y))=-16+(-14)
2y у нас уходят, получаем:
5x=-30, | 5
x=-6.
Возвращаемся к системе уравнений, не забывая переписать x.
{x=-6,
{-6+2y=-16;
{x=-6,
{2y=-16+6;
{x=-6,
{2y=-10; | 2
{x=-6,
{y=-5.
И, собственно, получим тот же ответ. Алгебраическое сложение можно использовать и с минусом. ( если бы у нас вышло, например, x+2y=-16 и 4x+2y=-14. Тогда бы все, что поменялось, так это сложение мы бы заменили вычитанием.
Наречия на -о (-е), образованные от качественных имен прилагательных, имеют две степени сравнения: сравнительную и превосходную.
Сравнительная степень наречий имеет две формы и составную форма сравнительной степени образуется с суффиксов -ее (-ей), -е, -ше от исходной формы наречий, от которой отбрасываются конечные -о (-е), -ко.
Составная форма сравнительной степени наречий образуется путем сочетания наречий и слов более и менее.
Превосходная степень наречий имеет, как правило, составную форму, которая представляет собой сочетание двух слов — сравнительной степени наречия и местоимения всех (всего).
Поделитесь своими знаниями, ответьте на вопрос:
Найдите точку , в которой касательная , проведенная к функции y=sin(4x-п\3), образует с положительным направлением оси ох угол 0°
cos x = 0, x = pí/2 + k.pí
Polagaem, čto x = pí/2, potom sin (4.pí/2-pí/3) =
sin (2pí - pí/3) =sin (5pí/3) = sin 300graducov = -V3/2
P/pí/2, .-V3/2/