Зияева57
?>

Варифметической прогрессии (аn), а4 = 26, а8 = 68. найдите а21?

Алгебра

Ответы

pokrov777krest
Решение смотри в приложении
Варифметической прогрессии (аn), а4 = 26, а8 = 68. найдите а21?
evoque2014

y = \cos( {x}^{x} )

Мы видим, что данная функция является сложной, поэтому будем её дифференцировать как сложную.

Формула

d/dx( f(g(x)) ) = f'(g(x)) × g'(x), где в нашем случае f(x) = cos(x), а g(x) = x^x.

Для применения правила дифференцирования сложной функции, заменим x^x новой переменной t.

Дифференцируем

\frac{d}{dt} ( \cos(t) ) \times \frac{d}{dx} ( {x}^{x} ) = - \sin(t) \times \frac{d}{dx} ( {x}^{x} ) = - \sin( {x}^{x} ) \times \frac{d}{dx} ( {x}^{x} )

Для упрощения производной запишем х^х как e^( ln(x^x) ).

- \sin( {x}^{x} ) \times \frac{d}{dx} (e^{ ln({x}^{x} ) } ) = - \sin( {x}^{x} ) \times \frac{d}{dx} (e^{x ln(x) } )

И опять сложная функция.

Дифференцируем её аналогично:

f(x) = e^x, g(x) = xln(x)

Заменим xln(x) перевенной k:

- \sin( {x}^{x} )( \frac{d}{dk}( {e}^{k} ) \times \frac{d}{dx} (x ln(x) ) ) = \\ = - \sin( {x}^{x} ) ( {e}^{k} \times \frac{d}{dx}(x ln(x) ) ) = \\ = - \sin( {x}^{x} ) ( {e}^{x ln(x)} \times \frac{d}{dx} (x ln(x) ))

За правилом производной произведения имеем:

- \sin( {x}^{x} ) {e}^{x ln(x) } (x \times \frac{d}{dx} (x ln(x) ) + ln(x) \times \frac{d}{dx}(x))

Вычисляем все производные и получаем:

- \sin( {x}^{x} ) {e}^{x ln(x) } (1 + ln(x) )

Это и есть ответ.

Dragun1684

y = \cos( {x}^{x} )

Мы видим, что данная функция является сложной, поэтому будем её дифференцировать как сложную.

Формула

d/dx( f(g(x)) ) = f'(g(x)) × g'(x), где в нашем случае f(x) = cos(x), а g(x) = x^x.

Для применения правила дифференцирования сложной функции, заменим x^x новой переменной t.

Дифференцируем

\frac{d}{dt} ( \cos(t) ) \times \frac{d}{dx} ( {x}^{x} ) = - \sin(t) \times \frac{d}{dx} ( {x}^{x} ) = - \sin( {x}^{x} ) \times \frac{d}{dx} ( {x}^{x} )

Для упрощения производной запишем х^х как e^( ln(x^x) ).

- \sin( {x}^{x} ) \times \frac{d}{dx} (e^{ ln({x}^{x} ) } ) = - \sin( {x}^{x} ) \times \frac{d}{dx} (e^{x ln(x) } )

И опять сложная функция.

Дифференцируем её аналогично:

f(x) = e^x, g(x) = xln(x)

Заменим xln(x) перевенной k:

- \sin( {x}^{x} )( \frac{d}{dk}( {e}^{k} ) \times \frac{d}{dx} (x ln(x) ) ) = \\ = - \sin( {x}^{x} ) ( {e}^{k} \times \frac{d}{dx}(x ln(x) ) ) = \\ = - \sin( {x}^{x} ) ( {e}^{x ln(x)} \times \frac{d}{dx} (x ln(x) ))

За правилом производной произведения имеем:

- \sin( {x}^{x} ) {e}^{x ln(x) } (x \times \frac{d}{dx} (x ln(x) ) + ln(x) \times \frac{d}{dx}(x))

Вычисляем все производные и получаем:

- \sin( {x}^{x} ) {e}^{x ln(x) } (1 + ln(x) )

Это и есть ответ.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Варифметической прогрессии (аn), а4 = 26, а8 = 68. найдите а21?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

infooem
likakedo4ka439
Карева Даниил1537
ОЧЕНЬ Решите задания на фото
Марина555
Ivanova55878
bykotatyana
Nikolaevich
oduvanalex
Monstr13
sv455umarketing74
zaalmix
vladburakoff5
Полковников_Милана
marim1994361
cmdkotelniki