Для начала упростим имеющееся выражение по формуле произведения синуса на косинус:
В нашем случае получается:
Итак, от мы перешли к
. Теперь будем рассматривать период. Говоря простым языком, период - это какое-то определённое значение, пройдя которое мы вернёмся в ту же самую точку, из которой начинали движение. Должно выполняться вот это равенство:
, где
- это и есть этот период. В нашем случае получается вот так:
Теперь есть два решения этого уравнения. Первый - это муторный и прямолинейный. Просто перенести всё в левую часть, далее через разность синусов и так медленно добираться до периода. Второй намного проще, но надо понимать, что происходит. Дело в том, что мы изменять не можем, так как это переменная, которую нам надо найти. Зато
мы можем присвоить любое удобное нам значение. Он ни на что не влияет, равенство в рамке продолжает соблюдаться, поскольку мы заменим икс в обеих частях, но всё станет намного проще. Например, здесь удобнее взять
. Нам известно, что
, и вся левая часть в него превратится. Получится вот так:
Теперь просто решаем обычное тригонометрическое уравнение и находим .
Итак, вот мы к этому и пришли. Возникает вопрос, что делать с ? В условии задания написано, что нужно найти наименьший положительный период данной функции. Так как
, то
. Положительное число должно быть больше нуля, и очевидно, что
при
. Поэтому подставляем наше первое значение:
. При нём получаем:
Но не стоит сразу радоваться. Сначала проверим период на соответствие равенству .
Согласно формуле приведения, , отсюда имеем:
Равенство не выполнено, значит, не является периодом данной функции. Проверяем дальше,
.
Точно так же подставляем в .
По формуле приведения , поэтому:
А потому и является искомым периодом.
ответ: В)
вычитание. можно заменить вычитание двух чисел сложением, при этом уменьшаемое сохраняет свой знак, а вычитаемое берётся с обратным знаком.
умножение. при умножении двух чисел их абсолютные величины умножаются, а произведение принимает знак « + » , если знаки сомножителей одинаковы, и знак « – » , если знаки сомножителей разные.
полезна следующая схема (правила знаков при умножении):
+ · + = +
+ · – = –
– · + = –
– · – = +
при умножении нескольких чисел ( двух и более ) произведение имеет знак « + » , если число отрицательных сомножителей чётно, и знак « – » , если их число нечётно.
п р и м е р :
деление. при делении двух чисел абсолютная величина делимого делится на абсолютную величину делителя, а частное принимает знак « + » , если знаки делимого и делителя одинаковы, и знак « – » , если знаки делимого и делителя разные.
здесь действуют те же правила знаков, что и при умножении:
Поделитесь своими знаниями, ответьте на вопрос:
Преобразуйте произведение в сумму: 1. sin(a+b)sin(a-b) 2.cos(a+b)cos(a-b)
1. sin(a+b)*sin(a-b) = [ sin(a)*cos(b) + cos(a)*sin(b) ]*[ sin(a)*cos(b) - cos(a)*sin(b)] = sin(a)*cos(b)*sin(a)*cos(b) - sin(a)*cos(b)*cos(a)*sin(b) + cos(a)*sin(b)*sin(a)*cos(b) - cos(a)*sin(b)*cos(a)*sin(b) = sin2(a)cos2(b) - cos2(a)sin2(b)
2. cos(a+b)*cos(a-b) = [ cos(a)*cos(b) - sin(a)*sin(b) ]*[ cos(a)*cos(b) + sin(a)*sin(b) ] = cos2(a)*cos2(b) - sin2(a)*sin2(b) (преобразования аналогичные первому примеру)