ответ: -1/2·ln (1+y²/x²) +arctg (y/x)= ln(x)
Объяснение:это неоднородное уравнение. Сделаем замену переменных: y=u·x, y' = u'x + u.
u+u'·x+(u·x+x)/(u·x-x) = 0
или
u·x/(u·x-x)+u+u'·x+x/(u·x-x) = 0 , вынесем х за скобки и сократим дроби, получим: u/(u-1) +u +u'x + 1/ (u-1)=0 ⇒ u'x= -1/(u-1) - u/(u-1) -u ⇒ u'x= -(1+u²)/(u-1) ⇒Преобразуем уравнение так, чтобы получить уравнение с разделяющимися переменными: -(u-1)/(u²+1)·du =1/x ·dx. Проинтегрируем обе части, получим: -1/2· ln(u²+1) +arctg(u) = ln(x) Но у=ux ⇒u=y/x, значит: -1/2·ln (1+y²/x²) +arctg (y/x)= ln(x)
4sin²x + sin2x = 3 ⇔ 4sin²x + 2sinx*cosx = 3(sin²x+cos²x) = 0 ⇔
sin²x + 2sinx*cosx - 3cos²x =0 ⇔ || : cos²x ≠ 0 ||
* * * однородное уравнение второго порядка Au²+Bu*v +Cv² * * *
tg²x + 2tgx - 3 =0 ( квадратное уравнение относительно tgx )
tgx₁ = 1 ; tgx₂ = - 3
x₁ = π/4 +πn , n ∈ ℤ ;
x₂ =arctg(-3) + πk ,k ∈ ℤ || arctg(-3) = -arctg(3) ||
ответ: π/4 +πn , n ∈ ℤ ; - arctg(3) + πk ,k ∈ ℤ .
4sin²x + sin2x = 3 ⇔ 4(1 - cos2x) /2 + sin2x = 3⇔ 1sin2x -2cos2x = 1 ⇔
√5 ( (1 /√5)*sin2x - (2/√5) *cos2x ) = 1 * * * √ (1²+2²) = √5 * * *
* * * 1 /√5 = cosφ ; 2/√5 =sinφ ; 2 = tgφ * * *
√5( sin2x*cosφ - cos2x *sinφ ) = 1 ⇔ √5( sin(2x - φ) ) = 1
sin(2x - φ) = 1/√5 ⇒ 2x - φ = (-1)ⁿarcsin( 1/√5) + πn , n∈ ℤ
x = 0,5φ + 0,5(-1)ⁿarcsin( 1/√5) + πn , n∈ ℤ
* * * φ = arccos(1 /√5) ; φ= arcsin(2/√5) ; φ= arctg2 * * *
Поделитесь своими знаниями, ответьте на вопрос:
Найдите площадь фигуры, ограниченной графиком функций y = x² - 4x + 5; y = 5 - x
x² - 4x + 5 = 5 - x,
x² - 3x = 0,
х(х - 3) = 0.
Отсюда 2 решения:
х = 0, х = 3.
Тогда S =