кубическая функция может иметь только локальный минимум. Потому что при х -> она уходит в
точки минимума и максимума соответствуют нулям производной
сумма степеней равна нулю, значит один корень = 1, второй = a
локальным минимумом является больший корень (кубическая функция возрастает от минус бесконечности до первого корня, потом убывает, потом снова возрастает до плюс бесконечности)
значит при a<1 локальный минимум f(x=1) = 1/3 - (a+1)/2 + a - 7 = a/2 - 7
при а>1 локальный минимум f(x=a) = a^3/3-(a+1)/2*a^2+a^2 - 7 = (1/3 - 1/2) a^3 + (-1/2+1) a^2 - 7 = - a^3 / 6 + a^2 / 2 - 7
при a = 1 имеем точку перегиба и никакого минимума
㏒₂х+㏒₂у=2; ху=2²=4, х и у положительны
2в степени (х-у)=(1/4)⁻¹,⁵
1/4 в степени -1.5=3, если равны основания, то равны и показатели степени. поэтому
х-у=3
ху=4, х=у+3, подставим во второе уравнение. у*(у+3)=4, у²+3у-4=0, по теореме, обратной теореме Виета у=1, у=-4 - не подходит, т.к. не попадает в ОДЗ, значит, у=1, тогда х=1+3=4
ответ (4;1)
9. Дана правильная четырехугольная пирамида, значит, основание высоты- точка пересечения диагоналей квадрата, который лежит в основании пирамиды и половина диагонали находим по теореме ПИфагора, т.е. как √(5²-3²)=4/м/. Тогда диагональ равна 2*4=8/м/.
Найдем площадь основания по формуле д²/2=8²/2=32/м²/. Объем пирамиды ищем по формуле v=sосн.h/3=32*3/3=32/м³/
10.Треугольник, образованный образующими конуса равнобедренный, в нем высота, проведенная к основанию, (которое являеся диаметром круга, лежащего в основании конуса), является и биссектрисой, и медианой. Раз биссектрисой, то высота лежит треугольника - осевого сечения конуса- равна половине образующей, т.е. 6см, (т.к. сумма острых углов в прямоугольном треугольнике равна 90град., и тогда высота лежит против угла в 30 град.) радиус основания конуса равен произведению образующей на косинус угла в 30 град., т.е.
12*√3/2=6√3/см/, а объем конуса v=ПR²h/3=П6²*3*6/3=216П/см³/
Поделитесь своими знаниями, ответьте на вопрос:
Как решить: корень из 2 умножить на sin a, если tg a=7 и a принадлежит ( 0; п)?
У нас tgα = 7, ⇒ Ctgα = 1/7
1 + 1/49 = 1/Sin²α
50/49 = 1/Sin²α
Sin²α = 49/50
Sinα = 7/(5√2)
Теперь наше задание:
√2*7|(5√2) = 7/5 = 1,4