X1+X2=-8 Тоді як X1=2 Отже X2=-8-2=-10 Також X1*X2=K K=2*(-10)=-20
Наталья
07.01.2022
Модуль означает, что знак числа попросту отбрасывается. Чтобы избавиться от модуля, нужно рассмотреть два случая: когда выражение под знаком модуля неотрицательно (и тогда это модуль равен самому этому выражению), и когда выражение под знаком модуля отрицательно (и тогда это модуль равен выражению, взятому с обратным знаком). 1. Выражение под знаком модуля приравниваем нулю и решаем получившееся уравнение, чтобы узнать интервалы, на которых это выражение может менять свой знак. х-4=0 → х=4. 2. Рассматриваем случай х<4 При этом выражение отрицательно, следовательно |x-4| = 4-x -3|x-4|-x = -3(4-x)-x = -12+3x-x = 2x-12 = 2(x-6) 3. Рассматриваем случай x≥4 При этом выражение неотрицательно, поэтому |x-4| = х-4 -3|x-4|-x = -3(x-4)-x = -3x+12-x = -4x+12 = 4(3-x) 4. Объединяя два эти выражения, получаем
maxchemaxim14
07.01.2022
Найдём шестой член геометрической прогрессии: а) 1/2, 2... Зная первый b₁=1/2 и второй b₂=2 члены геометрической прогрессии, найдём ее знаменатель: q=2:1/2=4 b₆=1/2*4⁵=1024/2=512 ответ: b₆=512
б) 1/2; -2... Зная первый b₁=1/2 и второй b₂=-2 члены геометрической прогрессии, найдём ее знаменатель: q=-2:1/2=-4 b₆=1/2*(-4)⁵=-1024/2=-512 ответ: b₆=-512
в) 8;12;... Зная первый b₁=8 и второй b₂=12 члены геометрической прогрессии, найдём ее знаменатель: q=12/8=1,5 b₆=8*1,5⁵=60,75 ответ: b₆=60,75
г) 8; -12;... Зная первый b₁=8 и второй b₂=-12 члены геометрической прогрессии, найдём ее знаменатель: q=-12/8=-1,5 b₆=8*(-1,5)⁵=-60,75 ответ: b₆=-60,75
Запишем формулу общего члена прогрессии: а) 2;3;... Зная первый b₁=2 и второй b₂=3 члены геометрической прогрессии, найдём ее знаменатель: q=3/2=1,5 bn=2*1,5ⁿ⁻¹ ответ: bn=2*1,5ⁿ⁻¹
б) √3 ;3;...; Зная первый b₁=√3 и второй b₂=3 члены геометрической прогрессии, найдём ее знаменатель: q=3/√3=3¹⁻¹⁽²=3¹⁽²=√3 bn=√3*(√3)ⁿ⁻¹ ответ: bn=√3*(√3)ⁿ⁻¹
в) 1;-1;...; Зная первый b₁=1 и второй b₂=-1 члены геометрической прогрессии, найдём ее знаменатель: q=-1/√1=-1 bn=1*(-1)ⁿ⁻¹ ответ: bn=(-1)ⁿ⁻¹
г) √2; -√8;...; Зная первый b₁=√2 и второй b₂=-√8 члены геометрической прогрессии, найдём ее знаменатель: q=-√8/√2=-√4*2/√2=-2*√2/√2=-2 bn=√2*(-2)ⁿ⁻¹ ответ: bn=√2*(-2)ⁿ⁻¹
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Один із коренів даного рівняння дорівнює 2. знайдіть коефіцієнт k та другий корінь рівняння: х^2+kх-8=0
Тоді як X1=2
Отже X2=-8-2=-10
Також X1*X2=K
K=2*(-10)=-20